Post Reply 
Monte-Carlo Pi
01-15-2022, 05:52 AM
Post: #18
RE: Monte-Carlo Pi
(01-14-2022 08:31 PM)Gerson W. Barbosa Wrote:  BTW, here’s an alternative to Valentin’s “faster, very precise, approximate way” (to get pi). Something more accurate than Free42 might be necessary to verify it is not exactly pi, though:

ln(((4001-1/(8002–1/(4001^2+(24006-5/8002-1)/4)))/5)^6-24)/sqrt(163)

where all the constants greater than 163 are 4001 or multiples thereof.

According to the 50g's LongFloat Library, this is greater than pi by approximately 2.299E-34.

<0|ɸ|0>
-Joe-
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Monte-Carlo Pi - Ángel Martin - 01-11-2022, 11:37 AM
RE: Monte-Carlo Pi - Albert Chan - 01-11-2022, 12:19 PM
RE: Monte-Carlo Pi - Andres - 01-11-2022, 12:51 PM
RE: Monte-Carlo Pi - J-F Garnier - 01-11-2022, 01:11 PM
RE: Monte-Carlo Pi - Gerson W. Barbosa - 01-19-2022, 09:07 PM
RE: Monte-Carlo Pi - Ángel Martin - 01-29-2022, 10:37 AM
RE: Monte-Carlo Pi - Gerson W. Barbosa - 01-29-2022, 02:58 PM
RE: Monte-Carlo Pi - KeithB - 01-11-2022, 02:12 PM
RE: Monte-Carlo Pi - ttw - 01-12-2022, 10:18 AM
RE: Monte-Carlo Pi - Dave Shaffer - 01-13-2022, 03:30 AM
RE: Monte-Carlo Pi - Csaba Tizedes - 01-11-2022, 05:40 PM
RE: Monte-Carlo Pi - C.Ret - 01-12-2022, 05:33 PM
RE: Monte-Carlo Pi - Ángel Martin - 01-12-2022, 01:50 PM
RE: Monte-Carlo Pi - ttw - 01-13-2022, 01:04 AM
RE: Monte-Carlo Pi - C.Ret - 01-13-2022, 06:14 PM
RE: Monte-Carlo Pi - KeithB - 01-13-2022, 01:58 PM
RE: Monte-Carlo Pi - Gerson W. Barbosa - 01-13-2022, 10:10 PM
RE: Monte-Carlo Pi - Ángel Martin - 01-14-2022, 09:03 AM
RE: Monte-Carlo Pi - C.Ret - 01-14-2022, 05:53 PM
RE: Monte-Carlo Pi - Gerson W. Barbosa - 01-14-2022, 08:31 PM
RE: Monte-Carlo Pi - Joe Horn - 01-15-2022 05:52 AM



User(s) browsing this thread: 2 Guest(s)