Post Reply 
Π day
03-15-2022, 04:56 PM (This post was last modified: 03-15-2022 04:58 PM by robve.)
Post: #20
RE: Π day
(03-14-2022 09:17 PM)Thomas Klemm Wrote:  That's an alternating series so we can use Valentin's program:
(11C) Summation of infinite, alternating series

We use \(\text{PSum} = 10\), \(\text{NDif} = 7\) for maximum accuracy:

10 ENTER 7 A

After some time, we get the following result in the display:

0.9068996822

The correct result \(\frac{\pi}{\sqrt{12}}\) on the HP-11C is:

0.9068996821

The number of function evaluations with n=10 and d=7 is n+d+2=19, but only 18 function evaluations are needed with Sharp's series to get 10 decimal places. So I am not sure if this is the best choice of parameterization for this particular alternating series.

To demonstrate what I mean, I did a bit of experimentation using a BASIC version of the algorithm with the PC-1475 double precision float (up to 20 digits, see my prior post). I found the following results to compute 19 decimal places:

Direct computation of Sharp's series to get 19 decimal places of pi:
35 function evaluations

Sum of alternating series with Aitken extrapolation and summing in reverse order to get 19 decimal places of pi:
n=26 d=1: 29 function evaluations + 5 table operations
n=25 d=3: 30 function evaluations + 14 table operations
n=24 d=4: 30 function evaluations + 20 table operations
n=23 d=5: 30 function evaluations + 27 table operations
n=22 d=6: 30 function evaluations + 35 table operations
n=21 d=7: 30 function evaluations + 44 table operations

The table operations are cheaper to compute compared to the function evaluations, but the overhead of increasing d grows quadratically. These computations are not negligible, so the smallest d should be chosen even if that requires increasing n by the same amount or slightly more.

The n=26 d=1 choice is optimal for 19 decimal places and slightly better than direct computation of the series. Testing with fewer places of pi show that d=1 is still the best choice.

This result is only applicable to the Sharp's alternating series. Other series will give different results and require different n and d parameterizations.

- Rob

"I count on old friends to remain rational"
Visit this user's website Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Π day - robve - 03-14-2022, 03:35 AM
RE: Π day - Dave Britten - 03-14-2022, 11:44 AM
RE: Π day - Gerson W. Barbosa - 03-14-2022, 12:25 PM
RE: Π day - robve - 03-14-2022, 05:52 PM
RE: Π day - Dave Britten - 03-14-2022, 06:15 PM
RE: Π day - Gerson W. Barbosa - 03-14-2022, 11:53 AM
RE: Π day - EdS2 - 03-14-2022, 01:55 PM
RE: Π day - Gerson W. Barbosa - 03-14-2022, 06:06 PM
RE: Π day - EdS2 - 03-15-2022, 12:05 PM
RE: Π day - robve - 03-14-2022, 09:35 PM
RE: Π day - Gerson W. Barbosa - 03-14-2022, 10:30 PM
RE: Π day - robve - 03-14-2022, 02:10 PM
RE: Π day - Gerson W. Barbosa - 03-14-2022, 08:29 PM
RE: π day - Thomas Klemm - 03-14-2022, 09:17 PM
RE: Π day - robve - 03-15-2022 04:56 PM
RE: Π day - ttw - 03-14-2022, 11:06 PM
RE: Π day - robve - 03-15-2022, 12:35 AM
RE: Π day - floppy - 04-02-2022, 11:12 AM
RE: Π day - Eddie W. Shore - 03-15-2022, 01:09 AM
RE: Π day - rprosperi - 03-15-2022, 12:25 PM
RE: Π day - Ren - 03-15-2022, 01:16 AM
RE: π day - Thomas Klemm - 03-15-2022, 07:55 PM
RE: Π day - robve - 03-15-2022, 08:49 PM
RE: Π day - Thomas Klemm - 03-17-2022, 03:40 AM
RE: Π day - robve - 03-18-2022, 01:04 AM
RE: Π day - Thomas Klemm - 03-17-2022, 03:54 AM
RE: Π day - Gerson W. Barbosa - 03-17-2022, 11:39 AM
RE: Π day - Thomas Klemm - 03-17-2022, 12:29 PM
RE: Π day - Gerson W. Barbosa - 03-17-2022, 02:10 PM
RE: Π day - Ángel Martin - 03-18-2022, 09:07 AM
RE: Π day - Frido Bohn - 03-19-2022, 09:45 AM
RE: Π day - Ángel Martin - 03-19-2022, 11:17 AM
RE: Π day - Frido Bohn - 03-19-2022, 01:01 PM
RE: Π day - Frido Bohn - 03-19-2022, 03:13 PM
RE: Π day - DavidM - 03-17-2022, 08:25 PM
RE: Π day - Xorand - 03-18-2022, 03:06 AM
RE: Π day - Steve Simpkin - 03-18-2022, 04:31 AM
RE: Π day - MeindertKuipers - 03-18-2022, 10:48 AM
RE: Π day - Ángel Martin - 03-18-2022, 11:04 AM
RE: Π day - Ángel Martin - 03-19-2022, 11:18 AM
RE: Π day - Ren - 04-02-2022, 03:14 AM
RE: Π day - Ángel Martin - 03-20-2022, 07:39 AM
RE: Π day - Frido Bohn - 03-20-2022, 07:28 PM
RE: π day - Thomas Klemm - 03-21-2022, 07:24 AM
RE: Π day - Frido Bohn - 03-21-2022, 04:03 PM
RE: Π day - Albert Chan - 03-21-2022, 10:45 PM
RE: Π day - Gerson W. Barbosa - 03-24-2022, 01:36 AM
RE: Π day - Albert Chan - 03-26-2022, 03:59 PM
RE: Π day - Gerson W. Barbosa - 03-26-2022, 05:37 PM
RE: Π day - Thomas Klemm - 03-21-2022, 05:27 PM
RE: π day - Thomas Klemm - 03-21-2022, 05:54 PM
RE: π day - Thomas Klemm - 03-21-2022, 06:33 PM
RE: Π day - Albert Chan - 03-26-2022, 11:24 PM
RE: Π day - Albert Chan - 03-27-2022, 01:44 PM
RE: Π day - Albert Chan - 03-27-2022, 04:00 PM
RE: Π day - ttw - 03-31-2022, 02:04 AM



User(s) browsing this thread: 1 Guest(s)