Arc SOHCAHTOA method
|
03-31-2022, 09:50 PM
(This post was last modified: 04-11-2022 01:32 AM by Albert Chan.)
Post: #1
|
|||
|
|||
Arc SOHCAHTOA method
Inspired from pi day thread, I discovered a great mnemonic for arc-trig function
asinq(x) = asin(√x) acosq(x) = acos(√x) atanq(x) = atan(Vx) Above definition remove the annoying square roots. Example, from asin(x) = acos(V(1-x²)), we have: asinq(x) = acosq(1-x) = atanq(x/(1-x)) → Triangle O, A, H = x, 1-x, 1 asinq and acosq now appeared complementary, O/H + A/H = 1, or O+A = H Or, relative to atanq(x): asinq(x/(1+x)) = acosq(1/(1+x)) = atanq(x) → Triangle O, A, H = x, 1, 1+x We can use the relation to build truly compact code. For example, to get sqrt(x^2/(1+x^2)), we only need 2 keys: ATAN SIN |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Arc SOHCAHTOA method - Albert Chan - 03-31-2022 09:50 PM
RE: soh-cah-toa, for arc-trig function - Albert Chan - 03-31-2022, 11:07 PM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-01-2022, 05:49 PM
RE: SOHCAHTOA, for arc-trig - toml_12953 - 04-01-2022, 02:56 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 12:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 09:59 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 01:51 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-06-2022, 08:46 PM
RE: SOHCAHTOA, for arc-trig - trojdor - 04-07-2022, 08:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-09-2022, 01:07 PM
|
User(s) browsing this thread: 1 Guest(s)