Arc SOHCAHTOA method
|
04-02-2022, 01:51 AM
Post: #6
|
|||
|
|||
RE: SOHCAHTOA, for arc-trig
For arc hyperbolic half-angle formulas, we can use cosh(2x) = 2 cosh(x)^2 - 1, and SOHCAHTOA rules.
acoshq(x) = 2*acoshq((sqrt(x)+1)/2) = 2*asinhq((sqrt(x)-1)/2) asinhq(x) = acoshq(1+x) = 2*asinhq((sqrt(1+x)-1)/2) = 2*asinhq(x/2/(sqrt(1+x)+1)) atanhq(x) = acoshq(1/(1-x)) = 2*acoshq((1/sqrt(1-x)+1)/2) = 2*acoshq((1+sqrt(1-x)) / (2*sqrt(1-x))) // CAH, A = 1+sqrt(1-x), H = 2*sqrt(1-x) = 2*atanhq((1-sqrt(1-x)) / (1+sqrt(1-x))) // TOA, O = A-H = 1-sqrt(1-x) = 2*atanhq(x/(1+sqrt(1-x))^2) Code: function asinhq(x) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Arc SOHCAHTOA method - Albert Chan - 03-31-2022, 09:50 PM
RE: soh-cah-toa, for arc-trig function - Albert Chan - 03-31-2022, 11:07 PM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-01-2022, 05:49 PM
RE: SOHCAHTOA, for arc-trig - toml_12953 - 04-01-2022, 02:56 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 12:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 09:59 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022 01:51 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-06-2022, 08:46 PM
RE: SOHCAHTOA, for arc-trig - trojdor - 04-07-2022, 08:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-09-2022, 01:07 PM
|
User(s) browsing this thread: 2 Guest(s)