Arc SOHCAHTOA method
|
04-02-2022, 09:59 AM
(This post was last modified: 04-02-2022 12:43 PM by Albert Chan.)
Post: #7
|
|||
|
|||
RE: SOHCAHTOA, for arc-trig
(04-02-2022 12:10 AM)Albert Chan Wrote: TOA suggested asinhq(x) = atanhq(x/(1+x)) Here is another way, by comparing slopes. XCas> s1 := factor(diff(asinh(sqrt(x)))) → 1/(sqrt(x)*sqrt(1+x)*2) XCas> s2 := factor(diff(atanh(sqrt(x)/sqrt(1+x)))) → 1/(sqrt(x)*sqrt(1+x)*2) Slope matches. Now check domain. This is important, see blackpenredpen video, THE CONFUSING DERIVATIVES Domain: for x = 0 to inf, we have x/(1+x) = 1 - 1/(1+x) = 0 to 1. Domain OK asinhq(x = 0) = asinh(0) = 0 atanhq(0/(1+0)) = atanh(0) = 0 2 sides slopes have same anti-derivative, and matching constant of integration. QED --- Even simpler, use arc-trig identity, asinq(x) = atanq(x/(1-x)) asinhq(x) = asinq(-x) / i = atanq(-x/(1+x)) / i = atanhq(x/(1+x)) QED Update: Just realized OP arc-trig identity was stated without proof, but its is trivial. With a right triangle, O² + A² = H² --> O=√x, H=1, A=√(1-x) θ = asin(√x) = acos(√(1-x)) = atan(√(x/(1-x))) QED Trivia: acosq ↔ acoshq formulas, argument have same pattern. acosq(x) = asinq(1-x) = asinhq(x-1)/i = acoshq(x)/i --> acos(z) = acosh(z)/i = pi/2 - asin(z) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Arc SOHCAHTOA method - Albert Chan - 03-31-2022, 09:50 PM
RE: soh-cah-toa, for arc-trig function - Albert Chan - 03-31-2022, 11:07 PM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-01-2022, 05:49 PM
RE: SOHCAHTOA, for arc-trig - toml_12953 - 04-01-2022, 02:56 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 12:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022 09:59 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-02-2022, 01:51 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-06-2022, 08:46 PM
RE: SOHCAHTOA, for arc-trig - trojdor - 04-07-2022, 08:10 AM
RE: SOHCAHTOA, for arc-trig - Albert Chan - 04-09-2022, 01:07 PM
|
User(s) browsing this thread: 2 Guest(s)