Half angle identity
|
04-17-2022, 03:29 PM
(This post was last modified: 04-17-2022 05:49 PM by Albert Chan.)
Post: #4
|
|||
|
|||
RE: Half angle identity
cos(105°) = sin(90-105°) = -sin(15°) = -√((1-cos(30°)/2) = -√((1-√3/2)/2)
We can remove nested square roots with identity (easily confirmed by squaring both side) If x,y square root free, RHS (assumed ≥ 0) have no nested square roots. \(\sqrt{2\;(x ± \sqrt{x^2-y^2})} = \sqrt{x+y}\;± \sqrt{x-y} \) -√((1-√3/2)/2) = -1/2 * √(2*(1 - √(1-1/4))) = -1/2 * (√(1+1/2) - √(1-1/2)) = (-√6 + √2)/4 = -1/(√6 + √2) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Half angle identity - IsaiahG0701 - 04-17-2022, 12:51 AM
RE: Half angle identity - Joe Horn - 04-17-2022, 03:43 AM
RE: Half angle identity - Steve Simpkin - 04-17-2022, 07:18 AM
RE: Half angle identity - Albert Chan - 04-17-2022 03:29 PM
RE: Half angle identity - Albert Chan - 04-17-2022, 05:09 PM
|
User(s) browsing this thread: 2 Guest(s)