Post Reply 
Half angle identity
04-17-2022, 05:09 PM
Post: #5
RE: Half angle identity
(04-17-2022 03:29 PM)Albert Chan Wrote:  \(\sqrt{2\;(x ± \sqrt{x^2-y^2})} = \sqrt{x+y}\;± \sqrt{x-y} \)

We can use the identity to build formula for complex square roots
Let Z = X+Y*i. For simplify assume Z on the unit circle.

\(\displaystyle \sqrt{2\;(X ± 1)} = \sqrt{Z}\;± \sqrt{\bar{Z}} \)

\(\displaystyle \sqrt{2Z}
= \sqrt{1+X} + i \; sgn(Y)\; \sqrt{1-X}
= \frac{(1+X)\;+\;i\;Y}{\sqrt{1+X}}
\)

\(\displaystyle \;\,\sqrt{Z} = \frac{Z+1}{|Z+1|}\)      // if |Z| = 1

Let Z = cis(θ). Matching parts of √Z = cis(θ/2), above gives half-angle formulas:
Assume θ = arg(z), with range ± pi

cos(θ/2) = (1+cos(θ)) / √(2+2 cos(θ)) = √((1+cos(θ))/2) ≥ 0
sin(θ/2) =     sin(θ)     / √(2+2 cos(θ)) = √((1−cos(θ))/2) * sgn(θ)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Half angle identity - IsaiahG0701 - 04-17-2022, 12:51 AM
RE: Half angle identity - Joe Horn - 04-17-2022, 03:43 AM
RE: Half angle identity - Steve Simpkin - 04-17-2022, 07:18 AM
RE: Half angle identity - Albert Chan - 04-17-2022, 03:29 PM
RE: Half angle identity - Albert Chan - 04-17-2022 05:09 PM



User(s) browsing this thread: 2 Guest(s)