Half angle identity
|
04-17-2022, 05:09 PM
Post: #5
|
|||
|
|||
RE: Half angle identity
(04-17-2022 03:29 PM)Albert Chan Wrote: \(\sqrt{2\;(x ± \sqrt{x^2-y^2})} = \sqrt{x+y}\;± \sqrt{x-y} \) We can use the identity to build formula for complex square roots Let Z = X+Y*i. For simplify assume Z on the unit circle. \(\displaystyle \sqrt{2\;(X ± 1)} = \sqrt{Z}\;± \sqrt{\bar{Z}} \) \(\displaystyle \sqrt{2Z} = \sqrt{1+X} + i \; sgn(Y)\; \sqrt{1-X} = \frac{(1+X)\;+\;i\;Y}{\sqrt{1+X}} \) \(\displaystyle \;\,\sqrt{Z} = \frac{Z+1}{|Z+1|}\) // if |Z| = 1 Let Z = cis(θ). Matching parts of √Z = cis(θ/2), above gives half-angle formulas: Assume θ = arg(z), with range ± pi cos(θ/2) = (1+cos(θ)) / √(2+2 cos(θ)) = √((1+cos(θ))/2) ≥ 0 sin(θ/2) = sin(θ) / √(2+2 cos(θ)) = √((1−cos(θ))/2) * sgn(θ) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Half angle identity - IsaiahG0701 - 04-17-2022, 12:51 AM
RE: Half angle identity - Joe Horn - 04-17-2022, 03:43 AM
RE: Half angle identity - Steve Simpkin - 04-17-2022, 07:18 AM
RE: Half angle identity - Albert Chan - 04-17-2022, 03:29 PM
RE: Half angle identity - Albert Chan - 04-17-2022 05:09 PM
|
User(s) browsing this thread: 2 Guest(s)