HP71B IBOUND fooled
|
05-03-2022, 07:09 PM
(This post was last modified: 09-22-2024 04:34 PM by Albert Chan.)
Post: #6
|
|||
|
|||
RE: HP71B IBOUND fooled
(05-02-2022 01:42 AM)Albert Chan Wrote: 50 Y=EXP(-X*X/4) @ Y=Y/2/COS(ASIN(Y)/3+PI/6) What if x is big ? (upper integral limit, u0 is tiny. Or, 1-u ≈ 1) \(\displaystyle Q(x) = {3 \over \sqrt{\pi}} \int_0^{u_0} \frac{u\;(1-u)\;du}{\sqrt{-\log(u^2\;(3-2u))}} ≈ {3 \over \sqrt{2\;\pi}} \int_0^{u_0} \frac{u\;du}{\sqrt{-\log(u)}} = 3 \; Q\left(\sqrt{-4\;\log(u_0)}\;\right) \) XCas> y := exp(-x*x/4) XCas> u0 := y/2 / cos(asin(y)/3 + pi/6) XCas> series(2*sqrt(-log(u0)), x=inf, polynom) → \(\displaystyle x + \frac{\ln\left(3\right)}{x}\) For big x, we have Q(x) / Q(x + ln(3)/x) ≈ 3 Perhaps we can replace constant 3 by other multiplier M ? \(\displaystyle M = \frac{Q(x)}{Q \left(x+\frac{k}{x} \right)} = \frac{erfc \left({x \over \sqrt2}\right)/2} {erfc \left({x \over \sqrt2} + {k \over \sqrt2 \; x} \right)/2} = e^k \left[ 1 + \frac{k\;(k+2)}{2 x^2} + \frac{k\;(k^3+4k^2-16)}{8x^4} \;+\; ... \right]\) Example: find y such that Q(y) = Q(x = 5) / 2 lua> x, m = 5, log(2) lua> k = m lua> x + k/x -- rough y 5.138629436111989 lua> k = m - log1p(k*(k+2)/(2*x^2)) lua> k = m - log1p(k*(k+2)/(2*x^2)) lua> x + k/x 5.131772468987268 lua> k = m - log1p(k*(k+2)/(2*x^2) + k*(k^3+4*k^2-16)/(8*x^4)) lua> k = m - log1p(k*(k+2)/(2*x^2) + k*(k^3+4*k^2-16)/(8*x^4)) lua> x + k/x 5.132077991427134 lua> -icdf(cdf(-x)/2) -- actual y 5.132018332044298 Comment: For k correction, we do not need accurate log1p() Even simple log1p(ε) ≈ ε may suffice. Or, we can revert series for k lua> t1 = - m*(m+2)/(2*x^2) lua> t2 = m*(m^2+4*m+6)/(2*x^4) lua> t3 = - m*(15*m^3+92*m^2+252*m+360)/(24*x^6) lua> k = t3 + t2 + t1 + k lua> x + k/x 5.131972797544282 To improve y estimate further, apply Aitken Delta^2 process lua> k = k - t3*t3 / (t3 - t2) lua> x + k/x 5.132010307411825 9/22/2024, Simpler proof, based from Q continued fraction \(\displaystyle Q(x ≥ 0) = \frac{\text{pdf (x)}}{x +}\; \frac{1}{x+}\; \frac{2}{x+}\; \frac{3}{x+}\;... \) If x is huge, we can estimate with just first CF "term" \(\displaystyle M = \frac{Q(x)}{Q \left(x+\frac{k}{x} \right)} ≈\left( \frac {\frac{1}{\sqrt{2\;\pi}} \exp(-\frac{x^2}{2}) ÷ x} {\frac{1}{\sqrt{2\;\pi}} \exp(-\frac{(x+\frac{k}{x})^2}{2}) ÷ (x+\frac{k}{x})} \right) = \exp\left(k + \frac{k^2}{2\;x^2}\right) \left(1 + \frac{k}{x^2}\right) ≈ e^k \) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021, 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021, 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022 07:09 PM
|
User(s) browsing this thread: 4 Guest(s)