Bürgi's Kunstweg to Calculate Sines
|
05-09-2022, 01:48 AM
Post: #3
|
|||
|
|||
RE: Bürgi's Kunstweg to Calculate Sines
(05-08-2022 01:19 PM)Thomas Klemm Wrote: We can therefore describe the double difference operation with the matrix \( \Delta \): Asymmetry of matrix, [2,-1] top, [-2,2] bottom , we should match edge cases coefficients. Lower bound, α = β, sin(α-β) = sin(0°) = 0 Δ² = sin(α+β) - 2 sin(α) + sin(α-β) = -dot([sin(α), sin(α+β)], [2, -1]) Upper bound, α = 90°, sin(α+β) = sin(α-β) = cos(β) Δ² = sin(α+β) - 2 sin(α) + sin(α-β) = -dot([sin(α-β), sin(α)], [-2,2]) Quote:Note: What appeared to be simple turned out to be a problem. Another way is to click QUOTE, copy raw matrix data (with tabs), then paste to Free42 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Bürgi's Kunstweg to Calculate Sines - Thomas Klemm - 05-07-2022, 11:31 AM
RE: Bürgi's Kunstweg to Calculate Sines - Thomas Klemm - 05-08-2022, 01:19 PM
RE: Bürgi's Kunstweg to Calculate Sines - Albert Chan - 05-09-2022 01:48 AM
RE: Bürgi's Kunstweg to Calculate Sines - Albert Chan - 05-09-2022, 04:55 PM
|
User(s) browsing this thread: 1 Guest(s)