(11C) TVM for HP-11C
|
05-11-2022, 01:07 PM
Post: #18
|
|||
|
|||
RE: (11C) TVM for HP-11C
We can estimate rate using simple formula, by "setting" PV=0, or FV=0
NPMT = (Ce+N*I/2)*PV + (Ce−N*I/2)*FV + N*PMT = (Ce+N*I/2)*(PV+FV) + N*(PMT−FV*I) // (PV,FV,PMT) → (PV+FV, 0, PMT−FV*I) = (Ce−N*I/2)*(PV+FV) + N*(PMT+PV*I) // (PV,FV,PMT) → (0, PV+FV, PMT+PV*I) (05-10-2022 09:35 PM)Albert Chan Wrote: lua> guess_i(36, 30000, -550, -15000) -- car lease example I = guess_i(36, 30000, -550, -15000) = guess_i(36, 15000, -550+15000*I, 0) // "set" FV=0 N = 36 P = 15000 / (550-15000*I) = 1 / (11/300 - I) → I = 11/300 - 1/P (04-09-2022 12:50 PM)Albert Chan Wrote:(10-16-2020 04:02 PM)Albert Chan Wrote: XCas> C := I*N / (1 - (1+I)^-N) // C = |N*PMT/PV|, "compounding factor" We can solve I = 2*(N-P)/(P*(N+1)) for I, but there is no need. For this formula, we had already done the work, when builiding guess_i() guess_i() I coefs: [(N^2-1)*(FV+PV)/12, (-FV*N+N*PV+FV+PV)/2 , N*PMT+FV+PV] Drop I^2 terms, solve for I, we have Dieter's formula I ≈ 2*(PV+FV + N*PMT) / (FV*(N-1) - PV*(N+1)) = 2*(30000-15000 + 36*-550) / (-15000*35 - 30000*37) ≈ 0.005872 (04-09-2022 05:47 PM)Albert Chan Wrote: \(\displaystyle I ≈ \frac{1}{P} - \frac{P}{N^2}\) I ≈ (11/300 - I) - 1/(11/300 - I) / 36^2 (2*I - 11/300)*36^2 * (I - 11/300) ≈ 1 2592*I^2 - 142.56*I + 0.7424 ≈ 0 Solve quadratics, for the small root, we have I ≈ 0.005824 Or, we can solve symbolically: XCas> ICOEFS := [n^2*pv*fv, n^2*pmt*(-pv+fv), -(n*pmt-pv-fv)*(n*pmt+pv+fv)] XCas> proot(ICOEFS(n=36, pv=30000, pmt=-550, fv=-15000)) [0.00582443202789,0.0491755679721] // keep the small root. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)