(42S) Newton Polynomial Interpolation
|
05-11-2022, 09:32 PM
(This post was last modified: 05-11-2022 09:42 PM by Thomas Klemm.)
Post: #2
|
|||
|
|||
(67) Newton Polynomial Interpolation
Program
This program for the HP-67 works similar to the one for the HP-42S: Code: 001: 31 25 11 ; LBL A Registers This is the situation with 3 points: R0: \(x_0\) R1: \([y_0]\) R2: \(x_1\) R3: \([y_0, y_1]\) R4: \(x_2\) R5: \([y_0, y_1, y_2]\) R6: \([y_1, y_2]\) R7: \([y_2]\) … D: ? … used E: 3 … number of points I: k … index When the next point is entered, some of the values at the end are overwritten: R0: \(x_0\) R1: \([y_0]\) R2: \(x_1\) R3: \([y_0, y_1]\) R4: \(x_2\) R5: \([y_0, y_1, y_2]\) R6: \(x_3\) R7: \([y_0, y_1, y_2, y_3]\) R8: \([y_1, y_2, y_3]\) R9: \([y_2, y_3]\) R10: \([y_3]\) … D: ? … used E: 4 … number of points I: k … index For \( n \) points \( 3 n - 1 \) registers are used. Thus we can enter at most \( 8 \) points. Initialisation Before you enter points, make sure the counter is reset: 0 STO E Examples The examples from the previous post work the same way. Only the index of the registers is shifted by 2: Code: 00: -5 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(42S) Newton Polynomial Interpolation - Thomas Klemm - 03-09-2019, 04:49 PM
(67) Newton Polynomial Interpolation - Thomas Klemm - 05-11-2022 09:32 PM
|
User(s) browsing this thread: 2 Guest(s)