TVM solve for interest rate, revisited
|
05-14-2022, 07:20 PM
Post: #5
|
|||
|
|||
RE: TVM solve for interest rate, revisited
(04-11-2022 03:11 PM)Albert Chan Wrote: This may be how I0 = 1/P - P/N² comes from Another way to show rate edges, without complexity of doing tanh transformation (*) Above quote assumed FV=0. But, we can fix it ... I = loan_rate(N, PV, PMT, FV) = loan_rate(N, PV+FV, PMT-FV*I, 0) From RHS, P = (PV+FV) / -(PMT-FV*I) I = 1/P PV*I + FV*I = -PMT + FV*I → I = -PMT/PV For asymptote edge I, value of FV does not matter. To get the other edge, we use time symmetry, travelling "backward in time" (N,PMT) sign flipped, (PV,FV) get swapped. I = loan_rate(N, PV, PMT, FV) = loan_rate(-N, FV, -PMT, PV) The other asymptote edge: I = PMT/FV -- (*) tanh version, with A=(PV+FV)/2, B=(PV-FV)/2: I = loan_rate(N, PV, PMT, FV) = loan_rate(N, A, PMT+B*I, A) Numerically to show both forms equivalent: XCAS> C := I*N/(1-(1+I)^-N); // compounding factor XCAS> NPMT := C*PV + C(N=-N)*FV + N*PMT XCAS> solve(NPMT(N=10, PV=50, PMT=-30, FV=100) = 0, I) → [-0.28443599888, 0.582038296883] XCAS> A, B := (50+100)/2, (50-100)/2 XCAS> solve(NPMT(N=10, PV=A, PMT=-30+B*I, FV=A)=0, I) → [-0.28443599888, 0.582038296883] |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)