(33S) Legendre Polynomials
|
05-18-2022, 07:34 PM
Post: #4
|
|||
|
|||
RE: (33S) Legendre Polynomials
From the aforementioned link:
\( (n+1)P_{n+1}(x)=(2n+1)xP_{n}(x)-nP_{n-1}(x) \) Initial values are: \( \begin{align} P_0(x) &= 1 \\ P_1(x) &= x \\ \end{align} \) I knew that we have an expert here: (49g 50g) Gegenbauer and Jacobi Polynomials From the Wikipedia article Gegenbauer polynomials: Quote:When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(33S) Legendre Polynomials - Eddie W. Shore - 05-18-2022, 02:59 AM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 04:02 PM
RE: (33S) Legendre Polynomials - John Keith - 05-18-2022, 05:11 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-18-2022, 08:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022 07:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 11:13 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 04:10 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-20-2022, 05:51 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 08:08 PM
|
User(s) browsing this thread: 4 Guest(s)