(33S) Legendre Polynomials
|
05-18-2022, 11:13 PM
Post: #6
|
|||
|
|||
RE: (33S) Legendre Polynomials
Here we go with the recursive formula:
\( \begin{align} P_0(x) &= 1 \\ \\ P_1(x) &= x \\ \\ P_{n+1}(x) &= \frac{(2n+1)xP_{n}(x)-nP_{n-1}(x)}{n+1} \end{align} \) HP-25 Code: 01: 23 01 : STO 1 Registers 0: \(n\) … the order of the Legendre polynomial 1: \(x\) … where to evaluate the polynomial at 2: \(P_{k-1}\) … the previous value 3: \(k\) … the counter Examples I've changed the usage slightly since entering the order \( n \) again and again annoyed me. Initialisation 5 STO 0 CLEAR PRGM Calculation 0.3 R/S 0.345386250 0.6 R/S -0.152640000 This leads to a blinkenlicht festival. 100 STO 0 0.25 R/S 0.07812465477 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(33S) Legendre Polynomials - Eddie W. Shore - 05-18-2022, 02:59 AM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 04:02 PM
RE: (33S) Legendre Polynomials - John Keith - 05-18-2022, 05:11 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-18-2022, 08:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 07:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022 11:13 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 04:10 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-20-2022, 05:51 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 08:08 PM
|
User(s) browsing this thread: 3 Guest(s)