(33S) Legendre Polynomials
|
05-20-2022, 05:51 PM
(This post was last modified: 05-20-2022 06:39 PM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: (33S) Legendre Polynomials
From https://solitaryroad.com/c679.html, P(n,x) and Q(n,x) are based on same recurrence relation formula.
Note: this version extended range to all non-negative integers n. (i.e. n=0 included) Code: function legendre_hlp(n,x,p0,k0) lua> P(4,4) 1060.375 lua> P(9,0.5) -0.2678985595703125 lua> Q(0, 0.5) 0.5493061443340549 lua> Q(10, 0.4) 0.37399122844670774 Numbers matched L4 (Legendre Polynomials) numbers (previous post) (05-20-2022 04:10 PM)Thomas Klemm Wrote: The program also implements the Legendre functions of the second kind (Qn) What happens if x = 0 ? Which legendre kind get returned ? I would assume first kind (x = +0), since signed zero may not be supported. This may be confusing, since P(n,0) ≠ Q(n,0) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(33S) Legendre Polynomials - Eddie W. Shore - 05-18-2022, 02:59 AM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 04:02 PM
RE: (33S) Legendre Polynomials - John Keith - 05-18-2022, 05:11 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-18-2022, 08:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 07:34 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-18-2022, 11:13 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 04:10 PM
RE: (33S) Legendre Polynomials - Albert Chan - 05-20-2022 05:51 PM
RE: (33S) Legendre Polynomials - Thomas Klemm - 05-20-2022, 08:08 PM
|
User(s) browsing this thread: 3 Guest(s)