(49g 50g) Number of Trailing Zeros in N!
|
06-03-2022, 03:19 PM
Post: #4
|
|||
|
|||
RE: (49g 50g) Number of Trailing Zeros in N!
In the same chapter Martin Gardner talks about printing a factorial as a tree.
This Python program produces one of the examples: Code: from math import factorial 5 119 90692 7755879 266003615 25819185379 7984360677298 470133958906714 46011174633964398 5839112233165772956 548496166254935516795 14565079522588677608012 6423489045662147453126349 825790036437158643266482002 88113505694916924243929121639 7995123320680205388149829536720 697546589338105120020005674705145 28641409978978956631664608452253922 2182139322091260889711710217500934598 659546487929459214735007200769105667735 54074289548655659977226200540160335058131 8365384235510714071491098835812736588922795 511456461421254773804907853073384484888784090 75030962875912509521999525292598359880846423952 3931204111818280979213544777644751538435208774603 088477116032223651164439419220002073567325180151958 35354728897604905269289015307797618984464654042934912 7882733479825616955531216107050271401259459875249508169 440013327395316887000833911764483284987619075088343797786 47371945157918046252226969546616811434035461815792968273198 2545625613705049834238544557702694536385292145346080336071424 289160111720849018903249047529128422886467764267877861568498090 42964480000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000000 Also he mentions: Quote:If someone had predicted fifty years ago that before the century And now, another 50 years later, we can do this with our smartphones. Mathematical Magic Show |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(49g 50g) Number of Trailing Zeros in N! - John Keith - 06-02-2022, 08:51 PM
RE: (49g 50g) Number of Trailing Zeros in N! - Thomas Klemm - 06-03-2022, 02:03 AM
RE: (49g 50g) Number of Trailing Zeros in N! - John Keith - 06-03-2022, 02:05 PM
RE: (49g 50g) Number of Trailing Zeros in N! - Thomas Klemm - 06-03-2022 03:19 PM
RE: (49g 50g) Number of Trailing Zeros in N! - John Keith - 06-03-2022, 08:52 PM
RE: (49g 50g) Number of Trailing Zeros in N! - John Keith - 06-04-2022, 06:53 PM
|
User(s) browsing this thread: 1 Guest(s)