(41C) Method of Successive Substitutions
|
06-10-2022, 07:20 AM
Post: #3
|
|||
|
|||
RE: (41C) Method of Successive Substitutions
(10-04-2020 04:21 PM)Eddie W. Shore Wrote: Be aware, some equations cannot be solved in this manner, such as x = π / sin x and x = ln(1 / x^4). In such cases we can often calculate \( f^{-1} \) algebraically and use this in the fixed-point iteration instead. Examples \( \begin{align} f(x) &= \log\left(\frac{1}{x^4}\right) \\ \\ f^{-1}(x) &= \sqrt[4]{\frac{1}{e^x}} \\ \end{align} \) Code: 00 { 4-Byte Prgm } If we start with \( 1 \) and iterate the program we get: 1.000000000 0.778800783 0.823081384 0.814019998 0.815866125 0.815489664 0.815566418 0.815550768 0.815553959 0.815553309 0.815553441 0.815553414 0.815553420 0.815553419 0.815553419 … The other example is a bit more complicated since ASIN returns a value that doesn't come close to a solution. So we need to adjust this by adding \( 2 \pi \): \( \begin{align} f(x) &= \frac{\pi}{\sin(x)} \\ \\ f^{-1}(x) &= \sin^{-1}\left(\frac{\pi}{x}\right) + 2 \pi \\ \end{align} \) Code: 00 { 9-Byte Prgm } If we start with \( 6 \) and iterate the program we get: 6.000000000 6.834254890 6.760823831 6.766453994 6.766017396 6.766051223 6.766048602 6.766048805 6.766048789 6.766048791 6.766048790 6.766048790 … The reason this works is that at a fixed-point we have \( x = f(x) \) and thus: \( \begin{align} \frac{\mathrm{d}}{\mathrm{d} x} [ f^{-1}\left(f(x)\right) ] &= \frac{\mathrm{d}}{\mathrm{d} x} x \\ \\ {[f^{-1}]}' \left(f(x)\right) \cdot {f}'(x) &= 1 \\ \\ {[f^{-1}]}' \left(x\right) \cdot {f}'(x) &= 1 \\ \end{align} \) A fixed-point is attractive if \( |f'(x)| < 1 \). If this is not the case for \( f \), then the equation above shows that it is true for the derivative of the inverse function. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(41C) Method of Successive Substitutions - Eddie W. Shore - 10-04-2020, 04:21 PM
RE: (41C) Method of Successive Substitutions - Albert Chan - 10-06-2020, 12:57 AM
RE: (41C) Method of Successive Substitutions - Thomas Klemm - 06-10-2022 07:20 AM
RE: (41C) Method of Successive Substitutions - Albert Chan - 06-10-2022, 04:51 PM
RE: (41C) Method of Successive Substitutions - Thomas Klemm - 06-11-2022, 07:11 AM
RE: (41C) Method of Successive Substitutions - Thomas Klemm - 06-12-2022, 09:14 PM
|
User(s) browsing this thread: 1 Guest(s)