(SR-52) Binary-to-Decimal conversion
|
06-17-2022, 10:38 PM
(This post was last modified: 08-20-2022 11:48 AM by pauln.)
Post: #6
|
|||
|
|||
RE: (SR-52) Binary-to-Decimal conversion
Another way of looking at this method is to notice that it transforms the value in register 0 from:
\(a_0 + a_1 \cdot 10 + \cdots + a_n \cdot 10^n\) into \(a_0 + a_1 \cdot 2 + \cdots + a_n \cdot 2^n\) To do so, it transforms \(10^k\) into \(2^k\) using the following general identity: \(a^k - b^k = (a - b)(a^{k-1} + a^{k-2} \cdot b + \cdots + b^{k-1})\) Applied to a = 10 and b = 2, we get: \(10^k - 2^k = 8 \cdot (10^{k-1} + 10^{k-2} \cdot 2 + \cdots + 2^{k-1})\) This explains the 8 at the beginning of the program as well as the values in register 2 (initially 8 and then 16, 32, 64, ...). |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(SR-52) Binary-to-Decimal conversion - SlideRule - 01-17-2020, 04:49 PM
RE: (SR-52) Binary-to-Decimal conversion - Thomas Klemm - 06-16-2022, 06:54 AM
RE: (SR-52) Binary-to-Decimal conversion - pauln - 06-17-2022, 12:47 AM
RE: (SR-52) Binary-to-Decimal conversion - Thomas Klemm - 06-17-2022, 06:48 AM
RE: (SR-52) Binary-to-Decimal conversion - Thomas Klemm - 06-17-2022, 07:37 AM
RE: (SR-52) Binary-to-Decimal conversion - pauln - 06-17-2022 10:38 PM
RE: (SR-52) Binary-to-Decimal conversion - Thomas Klemm - 06-18-2022, 05:23 AM
RE: (SR-52) Binary-to-Decimal conversion - pauln - 06-18-2022, 05:36 AM
|
User(s) browsing this thread: 1 Guest(s)