(15C) Halley's Method
|
06-18-2022, 03:37 PM
Post: #8
|
|||
|
|||
RE: (15C) Halley's Method
(06-14-2022 02:59 AM)Albert Chan Wrote: 2 sign changes, thus 0 or 2 positive roots (for R = 1+i) I was thinking of a fast way to locate extremum, check f sign, to decide number of roots. Let decay factor, g = n*x / ((1+x)^n - 1) f = (pv+fv)/n*g + pv*x + pmt f' = (pv+fv)/n*g' + pv f' = 0 → g' = -n*pv/(pv+fv) g' is too complex to be invertible back for x Instead, we approximate g with simple exponential decay function. Matching g value and slope at x=0, we have g ≈ exp((1-n)/2*x) exp is invertible with ln, we have: Extremum: xm ≈ m * ln(-m*n*pv / (pv+fv)) , where m = 2/(1-n) Reusing previous example, n=30, pv=6500, pmt=-1000, fv=50000 f = 56500*x/((1+x)^30-1) + 6500*x - 1000 xm ≈ -2/29 * ln(2/29 * 30 * 6500/56500) ≈ 0.09899 f(x = 0.09899) ≈ -6.46 // true extremum, f(x = 0.1002) ≈ -6.52 f(x = 0) = (pv+fv)/n + pmt = 883.33 We have locked in 1 roots ⇒ we have 2 roots. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(15C) Halley's Method - Thomas Klemm - 02-26-2022, 11:09 AM
RE: (15C) Halley's Method - Albert Chan - 02-26-2022, 03:48 PM
RE: (15C) Halley's Method - Albert Chan - 06-11-2022, 04:12 PM
RE: (15C) Halley's Method - Albert Chan - 06-14-2022, 06:22 PM
RE: (15C) Halley's Method - Gil - 06-14-2022, 01:20 AM
RE: (15C) Halley's Method - Albert Chan - 06-14-2022, 02:59 AM
RE: (15C) Halley's Method - Albert Chan - 06-18-2022 03:37 PM
RE: (15C) Halley's Method - Gil - 06-14-2022, 07:33 AM
|
User(s) browsing this thread: 2 Guest(s)