Pi Approximation Day
|
07-24-2022, 11:30 AM
(This post was last modified: 07-24-2022 11:32 AM by Thomas Klemm.)
Post: #21
|
|||
|
|||
RE: Pi Approximation Day
(07-22-2022 11:47 PM)Gerson W. Barbosa Wrote: \( I tried to convert \(2222_{4}\) in my head: \( \begin{align} 2222_{4} &= 2 \cdot 1111_{4} \\ &= 2 \cdot (4^3 + 4^2 + 4 + 1) \\ &= 2 \cdot \frac{4^4 - 1}{4 - 1} \\ &= 2 \cdot \frac{17 \cdot 15}{3} \\ &= 170 \\ \end{align} \) And similarly \(1111_{7}\): \( \begin{align} 1111_{7} &= 7^3 + 7^2 + 7 + 1 \\ &= \frac{7^4 - 1}{7 - 1} \\ &= \frac{50 \cdot 48}{6} \\ &= 400 \\ \end{align} \) The other numbers were easy, so I ended up with: 3.141592653589793212117310511154447 ----------------------------------- 3.141592653589793238462643383279503 You never cease to amaze me with your approximations of \(\pi\). Today I learned how to enter the base of a number in the Wolfram language: E^Surd[(4^^2222 - 1/(9^^22^2 + 16^^22^2 + 1/7^^1111))/99, 3^^11] |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)