Pi Approximation Day
|
07-25-2022, 12:03 AM
Post: #30
|
|||
|
|||
RE: Pi Approximation Day
(07-24-2022 10:16 PM)Thomas Klemm Wrote: \( Assumed x in first quadrant, to avoid cancellation errors, we can use cotangent cot(x/2) = cot(x) + √(1 + cot(x)^2) cot(pi/6) = √3 → cot(pi/12) = √3 + √(1+3) = 2 + √3 3 SQRT 2 + // cot(pi/12) ≈ 3.732 ENTER X^2 1 + SQRT + // cot(pi/24) ≈ 7.596 ENTER X^2 1 + SQRT + // cot(pi/48) ≈ 15.26 ENTER X^2 1 + SQRT + // cot(pi/96) ≈ 30.55 1/X 11 R/S 96 * 3.141592653589793238462643383279503 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 4 Guest(s)