Post Reply 
Pi Approximation Day
07-25-2022, 09:28 PM (This post was last modified: 07-26-2022 01:47 PM by Thomas Klemm.)
Post: #33
RE: Pi Approximation Day
(07-23-2022 02:20 AM)Thomas Klemm Wrote:  It uses Ramanujan's formula:

\(
\begin{align}
\pi^2 = 10 - \sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3}
\end{align}
\)

As I wondered why this should be the case I came up with the following derivation:

\(
\begin{align}
\frac{1}{n} - \frac{1}{n+1}
&= \frac{n+1 - n}{n(n+1)} \\
&= \frac{1}{n(n+1)} \\
\end{align}
\)

Plug this into the infinite sum to get:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3}
&= \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^3} \\
&= \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1}\right]^3 \\
\end{align}
\)

That's a bit like a telescoping sum.
It is of the form:

\(
\begin{align}
[a-b]^3 + [b-c]^3 + [c-d]^3 + \cdots
&= a^3 - 3a^2b + 3ab^2 - b^3 \\
&+ b^3 - 3b^2c + 3bc^2 - c^3 \\
&+ c^3 - 3c^2d + 3cd^2 - d^3 \\
&+ \cdots
\end{align}
\)

We notice that \(b^3\), \(c^3\), \(d^3\), \(\cdots\) all cancel.
Also we can extract the common factors of the residual terms:

\(
\begin{align}
[a-b]^3 + [b-c]^3 + [c-d]^3 + \cdots
= a^3 &- 3ab(a-b) \\
&- 3bc(b-c) \\
&- 3cd(c-d) \\
&+ \cdots
\end{align}
\)

This leaves us with:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3}
&= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1} \left[\frac{1}{n} - \frac{1}{n+1}\right] \\
&= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1}\frac{1}{n(n+1)} \\
&= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} \\
\end{align}
\)

A quick sanity check shows: Sum[1/(n(n+1))^2,{n,1,∞}]

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} = \frac{1}{3}\left(\pi^2-9\right)
\end{align}
\)

It appears that we're on track.

We can do the same as before but now the squares don't cancel:

\(
\begin{align}
[a-b]^2 + [b-c]^2 + [c-d]^2 + \cdots
&= a^2 - 2ab + b^2 \\
&+ b^2 - 2bc + c^2 \\
&+ c^2 - 2cd + d^2 \\
&+ \cdots
\end{align}
\)

Instead they are added twice (except for the first) and so we get:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2}
&= 2 \sum_{n=1}^{\infty} \frac{1}{n^2} - 1 \\
&- 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\
\end{align}
\)

But the second sum is a telescoping sum:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
&= \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} \\
&= 1
\end{align}
\)

And thus we end up with:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2}
&= 2 \sum_{n=1}^{\infty} \frac{1}{n^2} - 3 \\
\end{align}
\)

But now we're in well known territory since:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \\
\end{align}
\)

This leads to:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2}
&= 2 \frac{\pi^2}{6} - 3 \\
&= \frac{\pi^2}{3} - 3 \\
&= \frac{1}{3}\left(\pi^2-9\right) \\
\end{align}
\)

Plug this into the formula above and we get:

\(
\begin{align}
\sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3}
&= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} \\
&= 1 - 3 \frac{1}{3}\left(\pi^2-9\right) \\
&= 1 - \pi^2 + 9 \\
&= 10 - \pi^2 \\
\end{align}
\)

References
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Pi Approximation Day - Gerson W. Barbosa - 07-22-2022, 11:47 PM
RE: Pi Approximation Day - J-F Garnier - 07-23-2022, 11:44 AM
RE: Pi Approximation Day - C.Ret - 07-23-2022, 03:18 PM
RE: Pi Approximation Day - C.Ret - 07-23-2022, 05:18 PM
RE: Pi Approximation Day - Steve Simpkin - 07-24-2022, 11:59 AM
RE: Pi Approximation Day - Thomas Klemm - 07-23-2022, 02:20 AM
RE: Pi Approximation Day - J-F Garnier - 07-23-2022, 07:00 AM
RE: Pi Approximation Day - Albert Chan - 07-23-2022, 10:56 AM
RE: Pi Approximation Day - vaklaff - 07-23-2022, 11:26 AM
RE: Pi Approximation Day - Thomas Klemm - 07-23-2022, 06:46 PM
RE: Pi Approximation Day - Didier Lachieze - 07-23-2022, 09:09 PM
RE: Pi Approximation Day - Thomas Klemm - 07-24-2022, 07:03 AM
RE: Pi Approximation Day - Dan C - 07-24-2022, 09:37 AM
RE: Pi Approximation Day - Dan C - 07-24-2022, 11:29 AM
RE: Pi Approximation Day - Thomas Klemm - 07-24-2022, 11:30 AM
RE: Pi Approximation Day - Ajaja - 07-24-2022, 01:28 PM
RE: Pi Approximation Day - Thomas Klemm - 07-24-2022, 03:52 PM
RE: Pi Approximation Day - Albert Chan - 07-24-2022, 07:13 PM
RE: Pi Approximation Day - pauln - 07-24-2022, 06:39 PM
RE: Pi Approximation Day - EdS2 - 07-24-2022, 09:10 PM
RE: Pi Approximation Day - pauln - 07-24-2022, 11:27 PM
RE: Pi Approximation Day - Thomas Klemm - 07-24-2022, 10:16 PM
RE: Pi Approximation Day - Albert Chan - 07-25-2022, 12:03 AM
RE: Pi Approximation Day - Thomas Klemm - 07-25-2022, 06:38 AM
RE: Pi Approximation Day - Thomas Klemm - 07-25-2022 09:28 PM
RE: Pi Approximation Day - Albert Chan - 07-26-2022, 12:51 AM
RE: Pi Approximation Day - pauln - 07-26-2022, 01:27 AM
RE: Pi Approximation Day - Albert Chan - 07-26-2022, 12:27 PM
RE: Pi Approximation Day - Thomas Klemm - 07-26-2022, 05:24 AM
RE: Pi Approximation Day - Thomas Klemm - 07-26-2022, 01:38 PM
RE: Pi Approximation Day - EdS2 - 08-03-2022, 04:53 PM
RE: Pi Approximation Day - Thomas Klemm - 08-07-2022, 11:42 AM



User(s) browsing this thread: 2 Guest(s)