Pi Approximation Day
|
07-25-2022, 09:28 PM
(This post was last modified: 07-26-2022 01:47 PM by Thomas Klemm.)
Post: #33
|
|||
|
|||
RE: Pi Approximation Day
(07-23-2022 02:20 AM)Thomas Klemm Wrote: It uses Ramanujan's formula: As I wondered why this should be the case I came up with the following derivation: \( \begin{align} \frac{1}{n} - \frac{1}{n+1} &= \frac{n+1 - n}{n(n+1)} \\ &= \frac{1}{n(n+1)} \\ \end{align} \) Plug this into the infinite sum to get: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3} &= \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^3} \\ &= \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1}\right]^3 \\ \end{align} \) That's a bit like a telescoping sum. It is of the form: \( \begin{align} [a-b]^3 + [b-c]^3 + [c-d]^3 + \cdots &= a^3 - 3a^2b + 3ab^2 - b^3 \\ &+ b^3 - 3b^2c + 3bc^2 - c^3 \\ &+ c^3 - 3c^2d + 3cd^2 - d^3 \\ &+ \cdots \end{align} \) We notice that \(b^3\), \(c^3\), \(d^3\), \(\cdots\) all cancel. Also we can extract the common factors of the residual terms: \( \begin{align} [a-b]^3 + [b-c]^3 + [c-d]^3 + \cdots = a^3 &- 3ab(a-b) \\ &- 3bc(b-c) \\ &- 3cd(c-d) \\ &+ \cdots \end{align} \) This leaves us with: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3} &= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1} \left[\frac{1}{n} - \frac{1}{n+1}\right] \\ &= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{n} \frac{1}{n+1}\frac{1}{n(n+1)} \\ &= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} \\ \end{align} \) A quick sanity check shows: Sum[1/(n(n+1))^2,{n,1,∞}] \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} = \frac{1}{3}\left(\pi^2-9\right) \end{align} \) It appears that we're on track. We can do the same as before but now the squares don't cancel: \( \begin{align} [a-b]^2 + [b-c]^2 + [c-d]^2 + \cdots &= a^2 - 2ab + b^2 \\ &+ b^2 - 2bc + c^2 \\ &+ c^2 - 2cd + d^2 \\ &+ \cdots \end{align} \) Instead they are added twice (except for the first) and so we get: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} &= 2 \sum_{n=1}^{\infty} \frac{1}{n^2} - 1 \\ &- 2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \\ \end{align} \) But the second sum is a telescoping sum: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} &= \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} \\ &= 1 \end{align} \) And thus we end up with: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} &= 2 \sum_{n=1}^{\infty} \frac{1}{n^2} - 3 \\ \end{align} \) But now we're in well known territory since: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \\ \end{align} \) This leads to: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} &= 2 \frac{\pi^2}{6} - 3 \\ &= \frac{\pi^2}{3} - 3 \\ &= \frac{1}{3}\left(\pi^2-9\right) \\ \end{align} \) Plug this into the formula above and we get: \( \begin{align} \sum_{n=1}^{\infty} \frac{1}{n^3(n+1)^3} &= 1 - 3 \sum_{n=1}^{\infty} \frac{1}{[n(n+1)]^2} \\ &= 1 - 3 \frac{1}{3}\left(\pi^2-9\right) \\ &= 1 - \pi^2 + 9 \\ &= 10 - \pi^2 \\ \end{align} \) References |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)