HP71B IBOUND fooled
|
08-10-2022, 04:48 PM
Post: #7
|
|||
|
|||
RE: HP71B IBOUND fooled
(05-02-2022 02:57 PM)Albert Chan Wrote: This solve cubics, x^3 = a*x + b, for x For cubic(a,b), (sin,asin) → (cos,acos), we *still* get solutions of cubic, albeit in different order. XCAS> cubic2(a,b) := {local k:=sqrt(4*a/3); k .* cos(([0,2*pi,-2*pi].-acos(4b/k^3))./3)} If (a,b) are real, complex roots, if any, always comes in conjugate pairs. With above symmetry, if asin(), acos() are real, this implied at least 2 real roots --> all cubic roots real. (cos, acos) can easily mapped to (cosh, acosh) cosh(z) = cos(±i*z) // both cosh and cos are even function. acosh(z) = acos(z) * ±i // pick sign to produce non-negative real part Example, for value of Super Golden Ratio x^3 = x^2 + 1 (x-1/3)^3 = (x-1/3) * (1/3) + (29/27) // depressed cubic (x-1/3) = 2/3 * cos((2*n*pi - acos(29/2))/3) 29/2 > 1, cubic had only 1 real root, for n=0: x = 2/3*cosh(acosh(29/2)/3) + 1/3 ≈ 1.465571232 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021, 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021, 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022, 07:09 PM
|
User(s) browsing this thread: 2 Guest(s)