HP71B IBOUND fooled
|
08-10-2022, 06:01 PM
(This post was last modified: 08-11-2022 01:12 PM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: HP71B IBOUND fooled
(08-10-2022 04:48 PM)Albert Chan Wrote: For cubic(a,b), (sin,asin) → (cos,acos), we *still* get solutions of cubic, albeit in different order. Let θ = asin(4b/sqrt(4*a/3)^3) (0 - θ)/3 = pi/2 - (2*pi - (pi/2-θ))/3 (2*pi - θ)/3 = pi/2 - (0 - (pi/2-θ))/3 Swapping sin/asin to cos/acos, or vice versa, first 2 solutions order also swapped. Again, Super Golden ratio example, for all roots. XCAS> cubic(1/3, 29/27) .+ 1/3. [-0.232786+0.792552*i, 1.46557+5.60374e-17*i, -0.232786-0.792552*i] XCAS> cubic2(1/3, 29/27) .+ 1/3. [1.46557, -0.232786+0.792552*i, -0.232786-0.792552*i] Explanation of algebraic way to solve cubic roots https://www.hpmuseum.org/forum/thread-10...#pid150296 Kahan's method, for accurate numerical roots of cubic https://math.stackexchange.com/a/3374897 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021, 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021, 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022, 07:09 PM
|
User(s) browsing this thread: 3 Guest(s)