Post Reply 
HP71B IBOUND fooled
08-10-2022, 06:01 PM (This post was last modified: 08-11-2022 01:12 PM by Albert Chan.)
Post: #8
RE: HP71B IBOUND fooled
(08-10-2022 04:48 PM)Albert Chan Wrote:  For cubic(a,b), (sin,asin) → (cos,acos), we *still* get solutions of cubic, albeit in different order.

Let θ = asin(4b/sqrt(4*a/3)^3)

(0 - θ)/3 = pi/2 - (2*pi - (pi/2-θ))/3
(2*pi - θ)/3 = pi/2 - (0 - (pi/2-θ))/3

Swapping sin/asin to cos/acos, or vice versa, first 2 solutions order also swapped.

Again, Super Golden ratio example, for all roots.

XCAS> cubic(1/3, 29/27) .+ 1/3.

[-0.232786+0.792552*i, 1.46557+5.60374e-17*i, -0.232786-0.792552*i]

XCAS> cubic2(1/3, 29/27) .+ 1/3.

[1.46557, -0.232786+0.792552*i, -0.232786-0.792552*i]



Explanation of algebraic way to solve cubic roots
https://www.hpmuseum.org/forum/thread-10...#pid150296

Kahan's method, for accurate numerical roots of cubic
https://math.stackexchange.com/a/3374897
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
HP71B IBOUND fooled - Albert Chan - 05-21-2021, 07:17 PM
RE: HP71 IBOUND fooled - Albert Chan - 05-21-2021, 07:32 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-21-2021, 09:38 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 01:42 AM
RE: HP71B IBOUND fooled - Albert Chan - 05-02-2022, 02:57 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022, 04:48 PM
RE: HP71B IBOUND fooled - Albert Chan - 08-10-2022 06:01 PM
RE: HP71B IBOUND fooled - Albert Chan - 05-03-2022, 07:09 PM



User(s) browsing this thread: 3 Guest(s)