Super Golden Ratio
|
08-12-2022, 05:46 PM
Post: #5
|
|||
|
|||
RE: Super Golden Ratio
(08-08-2022 04:07 PM)Albert Chan Wrote: S(n) = [k1, k2, k3] * [r1, r2, r3] .^ n We assume that \(\alpha\), \(\beta\) and \(\gamma\) are the roots of \(x^3=x^2+1\). Thus we have: \( \begin{align} \alpha + \beta + \gamma &= 1 \\ \alpha \cdot \beta \cdot \gamma &= 1 \\ \end{align} \) For the direct formula \(S(n) = u \cdot \alpha^n + v \cdot \beta^n + w \cdot \gamma^n\) the constants \(u\), \(v\) and \(w\) are solved so that: \(S(1) = S(2) = S(3) = 1\) This leads to: \( \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \alpha^3 & \beta^3 & \gamma^3 \\ \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} \) This can be solved for \(u\) to get: \( \begin{align} u &= \frac{(1-\beta)(1-\gamma)}{\alpha(\alpha-\beta)(\alpha-\gamma)} \\ &= \frac{1 - (\beta+\gamma) + \beta \gamma}{a[\alpha^2 - (\beta+\gamma)\alpha + \beta \gamma]} \\ &= \frac{1 - (1-\alpha) + \frac{1}{\alpha}}{\alpha[\alpha^2 - (1-\alpha)\alpha + \frac{1}{\alpha}]} \\ &= \frac{\alpha + \frac{1}{\alpha}}{\alpha[2\alpha^2 - \alpha + \frac{1}{\alpha}]} \\ &= \frac{1+ \frac{1}{\alpha^2}}{2\alpha^2 - \alpha + \frac{1}{\alpha}} \\ &= \frac{1+ \frac{1}{\alpha^2}}{2\alpha^2 - 2\alpha + \alpha +\frac{1}{\alpha}} \\ &= \frac{\alpha}{3\alpha^2 - 2\alpha} \\ &= \frac{1}{3\alpha - 2} \end{align} \) And similarly for \(v\) and \(w\). We consider \(\alpha = \psi\), i.e. the real solution which is dominant. The following formula can be used to calculate \(\psi\): \( \begin{align} \psi ={\frac {2}{3}}\cosh {\left({\tfrac {\cosh ^{-1}\left({\frac {29}{2}}\right)}{3}}\right)}+{\frac {1}{3}} \end{align} \) This allows to calculate both \(\alpha\) in R00 and \(\frac{1}{u}\) in R01: Code: 00 { 30-Byte Prgm } R00: 1.465571231876768026656731225219939 R01: 2.396713695630304079970193675659816 We cheat a little bit and use only the dominant root and round the result to the next integer: Code: 00 { 12-Byte Prgm } Examples 1 R/S 1 2 R/S 1 3 R/S 1 4 R/S 2 5 R/S 3 6 R/S 4 7 R/S 6 29 R/S 27201 30 R/S 39865 31 R/S 58425 (08-08-2022 04:07 PM)Albert Chan Wrote: XCAS> K := proot([-1,0,3/31,1/31]); We can verify that indeed: \(31u^3=3u+1\) \( \begin{align} \frac{3}{u^2} + \frac{1}{u^3} &= 3(3\alpha-2)^2 + (3\alpha-2)^3 \\ &= (3\alpha-2)^2(3\alpha+1) \\ &= (9\alpha^2-12\alpha+4)(3\alpha+1) \\ &= 27\alpha^3 - 27\alpha^2 + 4 \\ &= 27(\alpha^3 - \alpha^2) + 4 \\ &= 27 + 4 \\ &= 31 \end{align} \) How did you come up with this equation? |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Super Golden Ratio - Thomas Klemm - 08-07-2022, 07:55 AM
RE: Super Golden Ratio - Thomas Klemm - 08-07-2022, 07:56 AM
RE: Super Golden Ratio - Albert Chan - 08-08-2022, 04:07 PM
RE: Super Golden Ratio - Gerson W. Barbosa - 08-09-2022, 10:45 AM
RE: Super Golden Ratio - Albert Chan - 08-17-2022, 02:23 PM
RE: Super Golden Ratio - Thomas Klemm - 08-12-2022 05:46 PM
RE: Super Golden Ratio - Albert Chan - 08-12-2022, 10:01 PM
RE: Super Golden Ratio - Albert Chan - 08-12-2022, 10:59 PM
RE: Super Golden Ratio - Thomas Klemm - 08-13-2022, 09:57 AM
RE: Super Golden Ratio - Albert Chan - 08-20-2022, 05:10 PM
|
User(s) browsing this thread: 9 Guest(s)