Super Golden Ratio
|
08-12-2022, 10:01 PM
Post: #6
|
|||
|
|||
RE: Super Golden Ratio
(08-12-2022 05:46 PM)Thomas Klemm Wrote: We assume that \(\alpha\), \(\beta\) and \(\gamma\) are the roots of \(x^3=x^2+1\). Simpler approach is do partial fraction decomposition of generation function. S(n) formula is coefficient of x^n, with RHS geometric series in normalized form. \(\displaystyle \frac{x}{(1 - α x)(1- β x) (1 - γ x)} = \frac{u}{1 - α x} + \frac{v}{1- β x} + \frac{w}{1 - γ x} \) Mulitply both side by (1 - α x), then let x = 1/α, we solved u \(\displaystyle u = \frac{1/α}{(1 - β/α) (1 - γ/α)} = \frac{α}{(α-β)(α-γ)}\) \(\displaystyle \frac{1}{u} = α - (β+γ) + \frac{βγ}{α} = α - (1-α) + (α-1) = (3α - 2)\) \(\displaystyle \frac{1}{u} + \frac{1}{v} + \frac{1}{w} = (3α\!-\!2) + (3β\!-\!2) + (3γ\!-\!2) = 3 - 6 = -3 \) If we let x = 0, we get 0 = u + v + w \(\displaystyle \;⇒ \frac{1}{uv} + \frac{1}{uw} + \frac{1}{vw} = 0\) \(\displaystyle \frac{1}{uvw} = (3α\!-\!2)(3β\!-\!2)(3γ\!-\!2) = 27(αβγ) - 18(αβ\!+\!αγ\!+\!βγ) + 12(α\!+\!β\!+\!γ) - 8 = 27 + 12 - 8 = 31 \) \(\displaystyle ⇒ (x-\frac{1}{u})(x-\frac{1}{v})(x-\frac{1}{w}) = x^3 + 3x^2 - 31\) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Super Golden Ratio - Thomas Klemm - 08-07-2022, 07:55 AM
RE: Super Golden Ratio - Thomas Klemm - 08-07-2022, 07:56 AM
RE: Super Golden Ratio - Albert Chan - 08-08-2022, 04:07 PM
RE: Super Golden Ratio - Gerson W. Barbosa - 08-09-2022, 10:45 AM
RE: Super Golden Ratio - Albert Chan - 08-17-2022, 02:23 PM
RE: Super Golden Ratio - Thomas Klemm - 08-12-2022, 05:46 PM
RE: Super Golden Ratio - Albert Chan - 08-12-2022 10:01 PM
RE: Super Golden Ratio - Albert Chan - 08-12-2022, 10:59 PM
RE: Super Golden Ratio - Thomas Klemm - 08-13-2022, 09:57 AM
RE: Super Golden Ratio - Albert Chan - 08-20-2022, 05:10 PM
|
User(s) browsing this thread: 9 Guest(s)