Machine epsilon of the HP Prime
|
09-17-2022, 04:28 PM
Post: #1
|
|||
|
|||
Machine epsilon of the HP Prime
// program mach_eps HP Prime
// September 17, 2022 // machine epsilon of the HP Prime // From Wikipedia; // "Machine epsilon or machine precision is an upper bound // on the relative approximation error due to rounding in // floating point arithmetic. This value characterizes // computer arithmetic in the field of numerical analysis, // and by extension in the subject of computational science." ///////////////////////////////////////////////////////////// export mach_eps() begin local epsmach; local one := 1.0; local two := 2.0; local u := 1.0; repeat u := u / two; until ((one + u) = one); epsmach := u; print(); print("machine epsilon of the HP Prime"); print("\neps = " + epsmach); print("\n1.0 + eps = " + (1.0 + epsmach)); end; |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Machine epsilon of the HP Prime - cdeaglejr - 09-17-2022 04:28 PM
RE: Machine epsilon of the HP Prime - rprosperi - 09-17-2022, 05:28 PM
RE: Machine epsilon of the HP Prime - EdS2 - 09-19-2022, 01:05 PM
RE: Machine epsilon of the HP Prime - EdS2 - 09-18-2022, 08:11 AM
RE: Machine epsilon of the HP Prime - Albert Chan - 09-18-2022, 12:20 PM
RE: Machine epsilon of the HP Prime - Albert Chan - 09-20-2022, 11:24 AM
RE: Machine epsilon of the HP Prime - EdS2 - 09-19-2022, 06:31 AM
|
User(s) browsing this thread: 2 Guest(s)