Log-Arcsine Algorithm
|
11-02-2022, 10:22 PM
Post: #1
|
|||
|
|||
Log-Arcsine Algorithm
Recently I stumbled upon the Log-Arcsine Algorithm in Peter Henrici's book: Computational Analysis with the HP-25 Pocket Calculator. (pp. 207)
The following recurrence relation is used: \( \begin{align} s_{n+1} = s_n \sqrt{\frac{2 s_n}{s_n + s_{n-1}}} \end{align} \) This little program can be used with most HP calculators: Code: ENTER Example 0 ENTER 1 R/S R/S R/S … 1.41421356237 1.53073372946 1.56072257613 1.56827424527 1.57016557848 1.57063862547 1.57075690057 1.57078647018 1.57079386264 1.57079571076 1.57079617279 1.57079628829 1.57079631717 1.57079632439 1.57079632619 1.57079632664 1.57079632676 1.57079632679 1.57079632679 1.57079632679 … Let's slap a loop around it and we have yet another program for the next \(\pi\)-day: Code: 00 { 26-Byte Prgm } This allows us to calculate both \(\log\) and \(\arcsin\) on an HP-16C: Code: 001 - 43,22, A LBL A Examples 10 GSB A 2.302585094 0.5 GSB B 0.523598775 Here is the same program for the HP-42S: Code: 00 { 56-Byte Prgm } References |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Log-Arcsine Algorithm - Thomas Klemm - 11-02-2022 10:22 PM
RE: Log-Arcsine Algorithm - Nihotte(lma) - 11-03-2022, 06:32 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 03:29 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 04:58 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-05-2022, 10:47 AM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 01:27 AM
RE: Log-Arcsine Algorithm - Albert Chan - 11-06-2022, 12:09 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 11:18 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-06-2022, 02:43 PM
|
User(s) browsing this thread: 2 Guest(s)