Log-Arcsine Algorithm
|
11-04-2022, 03:29 PM
Post: #3
|
|||
|
|||
RE: Log-Arcsine Algorithm
(11-02-2022 10:22 PM)Thomas Klemm Wrote: The following recurrence relation is used: Above initial conditions for θ = asin(x): s-1 = x*√(1-x*x) = sin(θ)*cos(θ) = sin(2θ)/2 s0 = x = sin(θ) The program then iterate for s1 = 2*sin(θ/2), s2 = 4*sin(θ/4), ... --> s∞ = θ = asin(x) Sequence is identical to asin(x) half-angle formula. Note: asinq(x) = asin(√x) (03-31-2022 11:07 PM)Albert Chan Wrote: asinq(x) = 2 * asinq(x/2/(1+sqrt(1-x))) >>> x = 1 # iterate for asin(√1) >>> for k in range(1,20): ... x /= 2*(1+sqrt(1-x)) ... print 2**k * sqrt(x) ... 1.41421356237 1.53073372946 1.56072257613 1.56827424527 1.57016557848 1.57063862547 1.57075690057 1.57078647018 1.57079386264 ... |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Log-Arcsine Algorithm - Thomas Klemm - 11-02-2022, 10:22 PM
RE: Log-Arcsine Algorithm - Nihotte(lma) - 11-03-2022, 06:32 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022 03:29 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 04:58 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-05-2022, 10:47 AM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 01:27 AM
RE: Log-Arcsine Algorithm - Albert Chan - 11-06-2022, 12:09 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 11:18 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-06-2022, 02:43 PM
|
User(s) browsing this thread: 2 Guest(s)