Post Reply 
Log-Arcsine Algorithm
11-05-2022, 10:47 AM
Post: #6
RE: Log-Arcsine Algorithm
It may be easier to get recurrence relation, directly from cosines.

Let θ = x/2^(n+1), s(n) = 2^n * sin(x/2^n)

cos(θ) = sin(2θ)/(2*sin(θ)) = s(n)/s(n+1)
cos(2θ) = sin(4θ)/(2*sin(2θ)) = s(n-1)/s(n)

cos(θ) = √((1+cos(2θ))/2)

s(n)/s(n+1) = √((1+s(n-1)/s(n))/2) --> s(n+1) = s(n) * √(2*s(n) / (s(n) + s(n-1)))
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Log-Arcsine Algorithm - Thomas Klemm - 11-02-2022, 10:22 PM
RE: Log-Arcsine Algorithm - Nihotte(lma) - 11-03-2022, 06:32 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 03:29 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 04:58 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-05-2022 10:47 AM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 01:27 AM
RE: Log-Arcsine Algorithm - Albert Chan - 11-06-2022, 12:09 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 11:18 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-06-2022, 02:43 PM



User(s) browsing this thread: 1 Guest(s)