Post Reply 
Log-Arcsine Algorithm
11-06-2022, 12:09 PM
Post: #8
RE: Log-Arcsine Algorithm
Here is a table of initial conditions, for all inverse trigonometric / hyperbolic / log functions

s(n+1) = s(n) * √(2*s(n) / (s(n) + s(n-1)))      → s(∞) = func(x)
Code:
asin    x*√(1-x²)       x
asinh   x*√(1+x²)       x

acos    x*√(1-x²)       √(1-x²)
acosh   x*√(x²-1)       √(x²-1)

atan    x/(1+x²)        x/√(1+x²)
atanh   x/(1-x²)        x/√(1-x²)

log     (x-1/x)/2       (x-1)/√(x)
log1p   x*(1+x/2)/(1+x) x/√(1+x)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Log-Arcsine Algorithm - Thomas Klemm - 11-02-2022, 10:22 PM
RE: Log-Arcsine Algorithm - Nihotte(lma) - 11-03-2022, 06:32 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 03:29 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-04-2022, 04:58 PM
RE: Log-Arcsine Algorithm - Albert Chan - 11-05-2022, 10:47 AM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 01:27 AM
RE: Log-Arcsine Algorithm - Albert Chan - 11-06-2022 12:09 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-05-2022, 11:18 PM
RE: Log-Arcsine Algorithm - Thomas Klemm - 11-06-2022, 02:43 PM



User(s) browsing this thread: 5 Guest(s)