[VA] SRC #012c - Then and Now: Sum
|
12-01-2022, 08:27 AM
(This post was last modified: 12-01-2022 08:33 AM by Werner.)
Post: #20
|
|||
|
|||
RE: [VA] SRC #012c - Then and Now: Sum
Using the original asymptotic series H(n) = ln(n) + gamma + 1/(2*n) - 1/(12*n^2) + 1/(120*n^4) - ... results in:
H(n-1)-H(n/2-1) - ln(2) = 1/(2n) + 1/(4n^2) - 1/(8n^4) + 1/(4n^6) - 17/(16n^8) + .. (thanks^2, Albert!). This formula is so accurate that my stopping criterion needed to be changed to 1+x = 1 ;-) But now, I need the definition only for n<32 instead of 128, and the running time on a real 42S went down to 36 seconds. 00 { 180-Byte Prgm } 01▸LBL "VA3" 02 3 03 STO "C" 04 CLX 05 STO "S" 06▸LBL 10 07 RCL "C" 08 XEQ H 09 1 10 ENTER 11 RCL+ ST Z 12 X=Y? 13 GTO 00 14 R↓ @ X contains 1 15 RCL "C" 16 XEQ F 17 ÷ 18 STO+ "S" 19 ISG "C" 20 X<>Y 21 GTO 10 22▸LBL 00 23 10 24 512 25 LN 26 - 27 6 28 ÷ 29 RCL+ "S" 30 1 31 2 32 LN 33 - 34 ÷ 35 RTN 36▸LBL D 37 CLA 38 BINM 39 ARCL ST X 40 CLX 41 ALENG 42 EXITALL 43 RTN 44▸LBL F 45 3 46 X>Y? 47 GTO 00 48 R↓ 49 STO× ST Y 50 XEQ D 51 GTO F 52▸LBL 00 53 R↓ 54 × 55 RTN 56▸LBL H @ H(2^N-1) - H(2^(N-1)-1) - LN(2), input N 57 2 58 X<>Y 59 Y^X 60 32 @ 128 on Free42 gives 18 digits of accuracy 61 X≤Y? 62 GTO 00 63 CLX 64 2 65 - 66 0.05 67 % 68 + 69 1 70 + @ n-1,n/2-1 71 0 72▸LBL 02 @ 1/(n-1) + 1/(n-2) + .. + 1/(n/2) 73 RCL ST Y 74 IP 75 1/X 76 + 77 DSE ST Y 78 GTO 02 79 2 80 LN 81 - 82 RTN 83▸LBL 00 @ H(n-1) - H(n/2-1) - ln(2) ~= 1/(2n) + 1/(4n^2) - 1/(8n^4) + 1/(4n^6) - 17/(16n^8) 84 R↓ 85 STO+ ST X 86 X^2 87 LASTX 88 1/X 89 272 90 RCL÷ ST Z 91 16 92 - 93 R^ 94 ÷ 95 2 96 + 97 R^ 98 ÷ 99 1 100 - 101 R^ 102 ÷ 103 - 104 END Cheers, Werner 41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 6 Guest(s)