Roots of Complex Numbers (Sharp, TI, Casio)
|
01-05-2023, 12:29 AM
(This post was last modified: 01-05-2023 02:40 AM by Matt Agajanian.)
Post: #16
|
|||
|
|||
RE: Roots of Complex Numbers (Sharp, TI, Casio)
(01-02-2023 08:47 AM)Thomas Klemm Wrote:(01-01-2023 10:03 PM)Matt Agajanian Wrote: Correct? Excellent techniques I’ve been working on some new routines. Please let me know if any of these are legit: Even if you're not familiar with the TI 36X Pro or 30X MathPrint, the keystrokes should be self-explanatory. Complex Number Power & Root Calculations (x+yi)^n Example: (11+2i)^4 R→Pr(11,2)^4 (15625) sto x R→Pθ(11,2)*4 (0.719413999) sto y P→Rx(x,y) 11753 P→Ry(x,y) 10296 Fourth root of r∡θ [(r∡θ)^1/4] Example: (15625∡ 0.719413999)^1/4 15625^1/4 11.18033989 sto x 0.719413999/4 0.17985335 sto y P→Rx(x,y) 11 P-Ry(x,y) 2 Fourth root of (x+yi) [(x+yi)^1/4] Example: (11753+10296 i)^1/4 11753 sto x 10296 sto y R→Pr(x,y)^.25 sto a R→Pθ(x,y)/4 sto b P→Rx(a,b) 11 P→Ry(a,b) 2 (r∡θ)^n Example: (11.18033989∡0.1798535)^4 (11+2i)^4 in polar form) (11.18033989∡0.1798535)^4 11.18033989 sto x 0.1798535 sto y P→Rx(x^4,y*4) → 11753 sto a P→Ry(x^4,y*4) → 10296 sto b R→Pr(a,b) → 15625 R→Pθ(a,b) → 0.71914 Thanks |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)