[VA] SRC #012d - Then and Now: Area
|
01-11-2023, 10:17 PM
(This post was last modified: 01-11-2023 10:21 PM by Albert Chan.)
Post: #8
|
|||
|
|||
RE: [VA] SRC #012d - Then and Now: Area
exp(-((x-d)^3-y)^2) > (R = y^2/M + exp(-sin(y))) // Given: M=30.07, d=1.596
Let s = sqrt(-log(R)) ≥ 0 ((x-d)^3-y)^2 < s^2 y-s < (x-d)^3 < y+s x is real if s is real --> R ≤ 1 --> 0 ≤ y ≤ 2.82740261413 Height, \(\displaystyle f(y) = x_2 - x_1 = \sqrt[3]{y+s} - \sqrt[3]{y-s}\) f slope is infinite when y = s --> R = exp(-y^2) --> y = 0 or 0.831971149978 Let a = 0.831971149978, a+b = a+B/2 = 2.82740261413 Infinite slopes at y = 0 and a, moved to z = 0 Area = \(\displaystyle \int_0^{a+b} f(y)\;dy = \int_0^{1/2} \Big[\big(f(a\,z) + f(a- a\,z)\big)·a \;+\; f(a+B\,z)·B\Big] \,dz \) Let g(z) = RHS integrand, and substitute z = x³/2, to make z=0 infinite slope, down to 0. INTEGRAL built-in u-transform should turn curve to bell-shaped, easy to integrate. (*) Area = \(\displaystyle \int_0^{1/2} g(z)\;dz = \int_0^1 g\!\left(\frac{x^3}{2}\right)·\left(\frac{3}{2}x^2\;dx \right) \) 10 DESTROY ALL @ M=30.07 @ A=.831971149978 @ B=2.82740261413-A @ P=1E-6 20 T=1/3 @ DEF FND(Y,S)=(Y+S)^T-SGN(Y-S)*ABS(Y-S)^T 30 DEF FNF(Y)=FND(Y,SQR(-LN(Y*Y/M+EXP(-SIN(Y))))) 40 B=B*2 @ DEF FNG(Z)=(FNF(A*Z)+FNF(A-A*Z))*A+FNF(A+B*Z)*B 50 SETTIME 0 @ DISP INTEGRAL(0,1,P,FNG(.5*IVAR^3)*IVAR^2)*1.5,TIME >run 2.07662636748 .49 ! @200× --> HP71B = 98 sec >p=1e-9 @ run 50 2.07662636775 .92 ! @200× --> HP71B = 184 sec (*) at y = a+b, f slope is infinite too. Above code assumed u-transform able to fix this edge. If not, we move all edges to z=0, with this revised g(z). >40 DEF FNG(Z)=(FNF(A*Z)+FNF(A-A*Z))*A+(FNF(A+B*Z)+FNF(A+B-B*Z))*B >run 2.07662636769 .6 ! @200× --> HP71B = 120 sec >p=1e-9 @ run 50 2.07662636775 1.2 ! @200× --> HP71B = 240 sec |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)