Post Reply 
Inout
02-06-2023, 02:26 PM (This post was last modified: 02-06-2023 02:54 PM by Gil.)
Post: #10
RE: Inout
Yes, my "..." is character number 30.

I use it also quite a lot in my verbal explanations as in Simplex
when saying, for instance from "a1, a2..., an", instead of repeated character "single dot".
It enables to show more characters in a line.

With your program, it's now easy to replace the bold characters to avoid the three rectangles relative to 19 CHR 1 CHR 19 CHR.

I use also a lot the small square (larger than a do), character number 14, to start different paragraphs in my explanations inside a program.

The same applies to "right triangle/large right arrow", character 134, relative to paragraphs in verbal explanation inside a program.

That is easy to change, for instance replace it by a minus sign with SRPL, so that INOUT could make it the appropriate conversion.

But a lot of work when the outlook of the original version, with character 14, is the want to keep in the program.

Perhaps I should just use your program to replace the bold characters by <B> and, after execution, replace at the end "<B>" by an empty string "".

Example, without INOUT,
for prog —>GO of Directory program SIMPLEX,
at line 12 starting with « (line 4 of the Matrix).



{ "« \"1 Arg:
MATRIX [m+1 × n+2]

m Row (In)Equalities
n Var xi (Š0/<0/Free)
& Z-Max/Min obj.funct
at last Row m+1:

[[1 0 0 0 0 'F' 0]
[0 1 0 0 0 'F' 0]
[0 1 0 0 0 'L' 9]
[]
[0 0 0 1 0 'E' 6]
[]
[Al1 Aln 'E' Cl]
[Am1 Amn 'G' Cm]
[ z1 zn C 0]]

† Letters F L E G
(& possible number C):
in Matrix Col n+1

'F' Free var xiŠ0, <0
'L' Less  ‰
'E' Equal  =
'G' Greater  Š

† Numbers Ci (Cl,Cm)
ž are free: Š0 or ‰0
ž & in Col n+2

† Input example
& explanations:

[[1 0 0 0 0 0 'F' 0]
Free var x1:-Ÿ<x1<Ÿ
Sign of xi unknown:
x1 may be Š0 or ‰0

[0 1 0 0 0 0 'F' 0]
[0 1 0 0 0 0 'L' 9]
'x2 is Free but ‰(L)9'
2 rows for -Ÿ<x2‰9!

[0 0 1 0 0 0 'L' 8]
var x3:  0!‰ x3 ‰ 8
 & not -Ÿ!‰ x3 ‰ 8,
as by rule/default
x3 (xi) alw. Š 0;
 for -Ÿ ‰ x3 ‰ 8
see above with F

 [0 0 0 1 0 0 'E' 6]
 var x4 = 6

 [0 0 0 0 1 0 'L' 0]
var x5:-Ÿ< x5 ‰ 0

 [0 0 0 0 0 1 'L'-8]
var x6:-Ÿ< x6 ‰ -8

[0 0 0 0 0 0 1 'G'-9]
 var x7: -9 ‰x7<Ÿ
& not: -9 ‰x7‰0!

  Contrarily to:
[0 0 0 0 0 0 1 'L' 9]
var x7: 0! ‰ x7 < 9
& not: -Ÿ! ‰ x7 < 9
  for -Ÿ ‰ x7 ‰ 9
see above with F

[]

[Ak1 Ako 'L' Ck]
-Ÿ< row k ‰ Ck

[Al1Aln 'E' Cl]
 row l = Cl

 [Am1Amn 'G' Cm]
Cm ‰ row m<Ÿ

[ z1 zn C 0 ]]
or [ z1 zn C 'Max']]
or [ z1 zn C 'Min']]
 for Z=z1x1+znxn+C
ž Z-row in last row
 ž C(often 0) of Z in
Col n+1 (not n+2!)
ž 0 'Max' or 'Min':
not important
but in Col n+2

†Rows order of the
(In)Equalit. is free

†Only Z-coef must alw.
be in last MatRow m+1

†At 1st question
further, reply:
1 for MAX
or 0 for MIN
& press ENTER 

† For the other 5 less
important questions:

žGeneral sol (slow)1
* Only SIMPLEX sol 0
žLin comb:all xiŠ0 1
Lin comb:allow x<00
žAuto/direct exec 1
Step-by-step 0
žFractions/exact 1
* Fast (no fract.) 0
žFull steps saved 1
* If lack of memory 0

choose 1/0 & ENTER
(1 is default sett.)

0 to above * Quest.
to speed up ( less
details & no fract.)

† Save all your
Matrixes in DATA Dir
(last menu page)

† If lack of memory:

choose option 0
for * above

† Still lack of memory

delete some MATrix
in DATA Dir
 ž delete this huge
string & following
DROP command
ž delete NOTE & VERS

† Review data/results
after output?

Press (at 1st Page)

žINPUT.last
žSOL (details)
žS.1­N (all vectors)

S.LIN (exact solut)

d.LIN (partial sol)

Press (at 2nd Page)

žSLACK.ß (transform)
žRESULT¦Ci.rows OK?
žSTEPS (details)

† About program
Max: OK
Min: should be OK
\" DROP 'INPUT.last' STO 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 { } DUP 0 0 0 0 0 RCLF 0 0 0 0 0 0 { } 0 1 0 0 0 0 { } DUP  ŽRnd ŽSTACK.full ŽAuto ŽMiMa.s Žm Žl.xi Žl.xi.s Žtime Žm0 Žm00 ŽminCi ŽZrow ŽI ŽJ ŽVECTßi Žstep0 ŽSTEPS.xß Žl.check ŽINP.cut ŽCi.sol ŽI.INP ŽF.l2 ŽJor Žl.xi.or Žfraction ŽINPUTmod ŽŸSOL Žfg ŽSOL1 Žjj ŽSLACK1.ß ŽSTEPS1 ŽRESULT1.ROW Žxab Žrow.prob.l ŽZ Žxr1 Žtable ŽCi Žineq ŽINPUTmod.OR ŽxsF ŽF.l
« OPTION TICKS 'Žtime' STO -100 CF RAD GO.NEXT
»
»"


[b]Original program
With only INOUT and your program


"« \"1 Arg:
<B>MATRIX [<B>m+1 × n+2<B>]<B>

<B>m<B> <B>Row<B> (In)Equalities
<B>n<B> Var xi (Š0<B>/<B><0<B>/<B>Free)
& Z-Max/Min obj.funct
at <B>last Row m<B>+<B>1<B>:

[[1 0 0 0 0 '<B>F<B>' 0]
[0 1 0 0 0 '<B>F<B>' 0]
[0 1 0 0 0 '<B>L<B>' 9]
[]
[0 0 0 1 0 '<B>E<B>' 6]
[]
[Al1 Aln '<B>E<B>' Cl]
[Am1 Amn '<B>G<B>' Cm]
[ <B>z1<B><B> zn C<B> 0]]

† Letters <B>F L E G<B>
(& possible number <B>C<B>):
in Matrix Col <B>n+1<B>

'<B>F<B>'<B> F<B>ree var <B>xi<B>Š0, <0
'<B>L<B>' <B>L<B>ess  ‰
'<B>E<B>' <B>E<B>qual  =
'<B>G<B>'<B> G<B>reater  Š

† Numbers <B>Ci<B> (Cl,Cm)
ž are free: Š0 or ‰0
ž & in Col <B>n+2<B>

† Input example
& explanations:

[[<B>1<B> 0 0 0 0 0 '<B>F<B>' 0]
<B><I>F<B>ree var x1:<I>-Ÿ<B><<B><I>x1<B><I><<B>Ÿ<I>
Sign of xi unknown:
x1<I> <I>may be <B><I>Š0<B><I> or <B><I>‰0<B>

[0 <B>1<B> 0 0 0 0 '<B>F<B>' <B>0<B>]
[0 <B>1<B> 0 0 0 0 '<B>L<B>' <B>9<B>]
'<I>x2 is <B>F<B>ree but<I> <B>‰<B>(<B>L<B>)<B>9<B>'
<B><I>2 rows<B> for <I>-Ÿ<B><<B><I>x2<B>‰<I>9!<B>

[0 0 <B>1<B> 0 0 0 '<B>L<B>' <B>8<B>]
<I>var x3:<I> <I> <B><I>0!‰ <B><I>x3 <B><I>‰ 8<B><I>
<I> & <B>not<B> -Ÿ<B>!‰ <B><I>x3 <B><I>‰ 8<B>,<I>
as by rule/default
x3 (xi) alw. <B><I>Š 0<B>;<I>
<I> <B>for<B> -Ÿ <B>‰ <B><I>x3 <B><I>‰ 8<B><I>
see above with <B><I>F

<B> [0 0 0 <B>1<B> 0 0 '<B>E<B>' <B>6<B>]
<I> var x4 <I>=<I> <B><I>6<B><I>

<I> [0 0 0 0 <B>1<B> 0 '<B>L<B>' <B>0<B>]
<I>var x5:<I>-Ÿ<B>< <B><I>x5 <B><I>‰ 0<B>
<B>
<B> [0 0 0 0 0 <B>1<B> '<B>L<B>'-<B>8<B>]
<I>var x6:<I>-Ÿ<B>< <B><I>x6 <B><I>‰ <B><I>-<B><I>8<B>

[0 0 0 0 0 0 <B>1 <B>'<B>G<B>'-<B>9<B>]
<I> var x7: -<B><I>9 ‰<B><I>x7<B><I><<B>Ÿ<B>
<B>&<B> not<B>:<B> <B><I>-<B><I>9 ‰<B><I>x7<B><I>‰0!

<B> <B> Contrarily <B>to:<B>
<B>[0 0 0 0 0 0 <B>1 <B>'<B>L<B>' <B>9<B>]
<I>var x7:<B><I> 0! ‰ <B><I>x7 <B><I>< 9
<B>& <B>not<B>:<B> <B><I>-<I>Ÿ<B>! ‰ <B><I>x7 <B><I>< 9
<B><I> <I> <B>for<B> -Ÿ <B>‰ <B><I>x7 <B><I>‰ 9<B><I>
see above with <B><I>F
<B>
[]

[Ak1 Ako '<B>L<B>' Ck]
-Ÿ<B>< <B><I>row k <B>‰<I> <B><I>Ck
<I>
[Al1Aln '<B>E<B>' Cl]
<I> row l <I>= <I>Cl

<I> [Am1Amn '<B>G<B>' Cm]
<I>Cm <B><I>‰ <B><I>row m<B><I><<B>Ÿ<I>
<I>
[ z1 zn <B>C <B><U>0<B><U> <B>]]
or [ z1 zn <B>C <B>'<U>Max<U>']]
or [ z1 zn <B>C <B>'<U>Min<U>']]
<I> for Z=z1x1+znxn+<B>C<B><I>
ž <B>Z-row<B> in <B>last<B> <B>row
<B> ž <B>C<B>(often 0) of Z in
Col <B>n+1<B> (not n+2!)
ž <U>0<U> '<U>Max<U>' or '<U>Min<U>':
not important
but in Col <B>n+2
<B>
†Rows order of the
(In)Equalit. is free

†Only <B>Z-<B>coef must alw.
be in <B>last<B> Mat<B>Row m+1
<B>
†At 1st question
further, reply:
<B>1<B> for <B>MAX<B>
or <B>0<B> for <B>MIN<B>
& press <B>ENTER <B>

† For the other 5 less
important questions:

žGeneral sol (slow)1
* <U>Only SIMPLEX sol 0<U>
žLin comb:all xiŠ0 1
<U>Lin comb:allow x<00<U>
žAuto/direct exec 1
<U>Step-by-step 0<U>
žFractions/exact 1
* <U>Fast (no fract.) 0<U>
žFull steps saved 1
<B>*<B> If lack of memory 0

choose <B>1<B>/<B>0<B> & <B>ENTER<B>
(1 is default sett.)

<B>0<B> to above * Quest<B>.<B>
to <B>speed up<B> ( less
details & no fract.)
<B>
<B>† <B>Save<B> all your
Matrixes in <B>DATA<B> Dir
(last menu page)

† If <B>lack<B> of <B>memory<B>:

choose option <B>0<B>
for <B>*<B> above

† Still <B>lack<B> of <B>memory<B>

delete some MATrix
in <B>DATA<B> Dir
<B> <B>ž<B> <B>delete this huge
string & following
<B>DROP<B> command
ž delete <B>NOTE <B>&<B> VERS
<B>
† <B>Review data/results<B>
after output?

Press (at 1st Page)

ž<B>INPUT<B>.last
ž<B>SOL <B>(details)
ž<B>S.1­N <B>(all vectors)<B>
<B>
<B>S.LIN <B>(exact solut)<B>
<B>
<B>d.LIN <B>(partial sol)

Press (at 2nd Page)

ž<B>SLACK<B>.ß (transform)
ž<B>RESUL<B>T¦Ci.rows OK?
ž<B>STEPS <B>(details)<B>

<B>† <B>About program<B>
Max: OK
Min: <B>should<B> be OK
\" DROP 'INPUT.last' STO 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 { } DUP 0 0 0 0 0 RCLF 0 0 0 0 0 0 { } 0 1 0 0 0 0 { } DUP  ŽRnd ŽSTACK.full ŽAuto ŽMiMa.s Žm Žl.xi Žl.xi.s Žtime Žm0 Žm00 ŽminCi ŽZrow ŽI ŽJ ŽVECTßi Žstep0 ŽSTEPS.xß Žl.check ŽINP.cut ŽCi.sol ŽI.INP ŽF.l2 ŽJor Žl.xi.or Žfraction ŽINPUTmod ŽŸSOL Žfg ŽSOL1 Žjj ŽSLACK1.ß ŽSTEPS1 ŽRESULT1.ROW Žxab Žrow.prob.l ŽZ Žxr1 Žtable ŽCi Žineq ŽINPUTmod.OR ŽxsF ŽF.l
« OPTION TICKS 'Žtime' STO -100 CF RAD GO.NEXT
»
»"

And, at the end, deleting the "<B>“
"« \"1 Arg:
MATRIX [m+1 × n+2]

m Row (In)Equalities
n Var xi (Š0/<0/Free)
& Z-Max/Min obj.funct
at last Row m+1:

[[1 0 0 0 0 'F' 0]
[0 1 0 0 0 'F' 0]
[0 1 0 0 0 'L' 9]
[]
[0 0 0 1 0 'E' 6]
[]
[Al1 Aln 'E' Cl]
[Am1 Amn 'G' Cm]
[ z1 zn C 0]]

† Letters F L E G
(& possible number C):
in Matrix Col n+1

'F' Free var xiŠ0, <0
'L' Less  ‰
'E' Equal  =
'G' Greater  Š

† Numbers Ci (Cl,Cm)
ž are free: Š0 or ‰0
ž & in Col n+2

† Input example
& explanations:

[[1 0 0 0 0 0 'F' 0]
<I>Free var x1:<I>-Ÿ<<I>x1<I><Ÿ<I>
Sign of xi unknown:
x1<I> <I>may be <I>Š0<I> or <I>‰0

[0 1 0 0 0 0 'F' 0]
[0 1 0 0 0 0 'L' 9]
'<I>x2 is Free but<I> ‰(L)9'
<I>2 rows for <I>-Ÿ<<I>x2‰<I>9!

[0 0 1 0 0 0 'L' 8]
<I>var x3:<I> <I> <I>0!‰ <I>x3 <I>‰ 8<I>
<I> & not -Ÿ!‰ <I>x3 <I>‰ 8,<I>
as by rule/default
x3 (xi) alw. <I>Š 0;<I>
<I> for -Ÿ ‰ <I>x3 <I>‰ 8<I>
see above with <I>F

[0 0 0 1 0 0 'E' 6]
<I> var x4 <I>=<I> <I>6<I>

<I> [0 0 0 0 1 0 'L' 0]
<I>var x5:<I>-Ÿ< <I>x5 <I>‰ 0

[0 0 0 0 0 1 'L'-8]
<I>var x6:<I>-Ÿ< <I>x6 <I>‰ <I>-<I>8

[0 0 0 0 0 0 1 'G'-9]
<I> var x7: -<I>9 ‰<I>x7<I><Ÿ
& not: <I>-<I>9 ‰<I>x7<I>‰0!

 Contrarily to:
[0 0 0 0 0 0 1 'L' 9]
<I>var x7:<I> 0! ‰ <I>x7 <I>< 9
& not: <I>-<I>Ÿ! ‰ <I>x7 <I>< 9
<I> <I> for -Ÿ ‰ <I>x7 <I>‰ 9<I>
see above with <I>F

[]

[Ak1 Ako 'L' Ck]
-Ÿ< <I>row k ‰<I> <I>Ck
<I>
[Al1Aln 'E' Cl]
<I> row l <I>= <I>Cl

<I> [Am1Amn 'G' Cm]
<I>Cm <I>‰ <I>row m<I><Ÿ<I>
<I>
[ z1 zn C <U>0<U> ]]
or [ z1 zn C '<U>Max<U>']]
or [ z1 zn C '<U>Min<U>']]
<I> for Z=z1x1+znxn+C<I>
ž Z-row in last row
ž C(often 0) of Z in
Col n+1 (not n+2!)
ž <U>0<U> '<U>Max<U>' or '<U>Min<U>':
not important
but in Col n+2

†Rows order of the
(In)Equalit. is free

†Only Z-coef must alw.
be in last MatRow m+1

†At 1st question
further, reply:
1 for MAX
or 0 for MIN
& press ENTER

† For the other 5 less
important questions:

žGeneral sol (slow)1
* <U>Only SIMPLEX sol 0<U>
žLin comb:all xiŠ0 1
<U>Lin comb:allow x<00<U>
žAuto/direct exec 1
<U>Step-by-step 0<U>
žFractions/exact 1
* <U>Fast (no fract.) 0<U>
žFull steps saved 1
* If lack of memory 0

choose 1/0 & ENTER
(1 is default sett.)

0 to above * Quest.
to speed up ( less
details & no fract.)

† Save all your
Matrixes in DATA Dir
(last menu page)

† If lack of memory:

choose option 0
for * above

† Still lack of memory

delete some MATrix
in DATA Dir
ž delete this huge
string & following
DROP command
ž delete NOTE & VERS

† Review data/results
after output?

Press (at 1st Page)

žINPUT.last
žSOL (details)
žS.1­N (all vectors)

S.LIN (exact solut)

d.LIN (partial sol)

Press (at 2nd Page)

žSLACK.ß (transform)
žRESULT¦Ci.rows OK?
žSTEPS (details)

† About program
Max: OK
Min: should be OK
\" DROP 'INPUT.last' STO 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 { } DUP 0 0 0 0 0 RCLF 0 0 0 0 0 0 { } 0 1 0 0 0 0 { } DUP  ŽRnd ŽSTACK.full ŽAuto ŽMiMa.s Žm Žl.xi Žl.xi.s Žtime Žm0 Žm00 ŽminCi ŽZrow ŽI ŽJ ŽVECTßi Žstep0 ŽSTEPS.xß Žl.check ŽINP.cut ŽCi.sol ŽI.INP ŽF.l2 ŽJor Žl.xi.or Žfraction ŽINPUTmod ŽŸSOL Žfg ŽSOL1 Žjj ŽSLACK1.ß ŽSTEPS1 ŽRESULT1.ROW Žxab Žrow.prob.l ŽZ Žxr1 Žtable ŽCi Žineq ŽINPUTmod.OR ŽxsF ŽF.l
« OPTION TICKS 'Žtime' STO -100 CF RAD GO.NEXT
»
»" "\\<< \"1 Arg:
MATRIX [m+1 \\.x n+2]

m Row (In)Equalities
n Var xi (\\>=0/<0/Free)
& Z-Max/Min obj.funct
at last Row m+1:

[[1 0 0 0 0 'F' 0]
[0 1 0 0 0 'F' 0]
[0 1 0 0 0 'L' 9]
[]
[0 0 0 1 0 'E' 6]
[]
[Al1 Aln 'E' Cl]
[Am1 Amn 'G' Cm]
[ z1 zn C 0]]

\\|> Letters F L E G
(& possible number C):
in Matrix Col n+1

'F' Free var xi\\>=0, <0
'L' Less \\-> \\<=
'E' Equal \\-> =
'G' Greater \\-> \\>=

\\|> Numbers Ci (Cl,Cm)
\\[] are free: \\>=0 or \\<=0
\\[] & in Col n+2

\\|> Input example
& explanations:

[[1 0 0 0 0 0 'F' 0]
<I>Free var x1:<I>-\\oo<<I>x1<I><\\oo<I>
Sign of xi unknown:
x1<I> <I>may be <I>\\>=0<I> or <I>\\<=0

[0 1 0 0 0 0 'F' 0]
[0 1 0 0 0 0 'L' 9]
'<I>x2 is Free but<I> \\<=(L)9'
\\-><I>2 rows for <I>-\\oo<<I>x2\\<=<I>9!

[0 0 1 0 0 0 'L' 8]
<I>var x3:<I> <I> <I>0!\\<= <I>x3 <I>\\<= 8<I>
<I> & not -\\oo!\\<= <I>x3 <I>\\<= 8,<I>
as by rule/default
x3 (xi) alw. <I>\\>= 0;<I>
<I> for -\\oo \\<= <I>x3 <I>\\<= 8<I>
see above with <I>F

[0 0 0 1 0 0 'E' 6]
<I> var x4 <I>=<I> <I>6<I>

<I> [0 0 0 0 1 0 'L' 0]
<I>var x5:<I>-\\oo< <I>x5 <I>\\<= 0

[0 0 0 0 0 1 'L'-8]
<I>var x6:<I>-\\oo< <I>x6 <I>\\<= <I>-<I>8

[0 0 0 0 0 0 1 'G'-9]
<I> var x7: -<I>9 \\<=<I>x7<I><\\oo
& not: <I>-<I>9 \\<=<I>x7<I>\\<=0!

 Contrarily to:
[0 0 0 0 0 0 1 'L' 9]
<I>var x7:<I> 0! \\<= <I>x7 <I>< 9
& not: <I>-<I>\\oo! \\<= <I>x7 <I>< 9
<I> <I> for -\\oo \\<= <I>x7 <I>\\<= 9<I>
see above with <I>F

[]

[Ak1 Ako 'L' Ck]
-\\oo< <I>row k \\<=<I> <I>Ck
<I>
[Al1Aln 'E' Cl]
<I> row l <I>= <I>Cl

<I> [Am1Amn 'G' Cm]
<I>Cm <I>\\<= <I>row m<I><\\oo<I>
<I>
[ z1 zn C <U>0<U> ]]
or [ z1 zn C '<U>Max<U>']]
or [ z1 zn C '<U>Min<U>']]
<I> for Z=z1x1+znxn+C<I>
\\[] Z-row in last row
\\[] C(often 0) of Z in
Col n+1 (not n+2!)
\\[] <U>0<U> '<U>Max<U>' or '<U>Min<U>':
not important
but in Col n+2

\\|>Rows order of the
(In)Equalit. is free

\\|>Only Z-coef must alw.
be in last MatRow m+1

\\|>At 1st question
further, reply:
1 for MAX
or 0 for MIN
& press ENTER

\\|> For the other 5 less
important questions:

\\[]General sol (slow)\\->1
* <U>Only SIMPLEX sol \\->0<U>
\\[]Lin comb:all xi\\>=0 \\->1
<U>Lin comb:allow x<0\\->0<U>
\\[]Auto/direct exec \\->1
<U>Step-by-step \\->0<U>
\\[]Fractions/exact \\->1
* <U>Fast (no fract.) \\->0<U>
\\[]Full steps saved \\->1
* If lack of memory \\->0

choose 1/0 & ENTER
(1 is default sett.)

0 to above * Quest.
to speed up (\\-> less
details & no fract.)

\\|> Save all your
Matrixes in DATA Dir
(last menu page)

\\|> If lack of memory:

choose option 0
for * above

\\|> Still lack of memory

delete some MATrix
in DATA Dir
\\[] delete this huge
string & following
DROP command
\\[] delete NOTE & VERS

\\|> Review data/results
after output?

\\->Press (at 1st Page)

\\[]INPUT.last
\\[]SOL (details)
\\[]S.1\\173N (all vectors)

S.LIN (exact solut)

d.LIN (partial sol)

\\->Press (at 2nd Page)

\\[]SLACK.\\Gb (transform)
\\[]RESULT\\166Ci.rows OK?
\\[]STEPS (details)

\\|> About program
Max: OK
Min: should be OK
\" DROP 'INPUT.last' STO 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 { } DUP 0 0 0 0 0 RCLF 0 0 0 0 0 0 { } 0 1 0 0 0 0 { } DUP \\-> \\<-Rnd \\<-STACK.full \\<-Auto \\<-MiMa.s \\<-m \\<-l.xi \\<-l.xi.s \\<-time \\<-m0 \\<-m00 \\<-minCi \\<-Zrow \\<-I \\<-J \\<-VECT\\Gbi \\<-step0 \\<-STEPS.x\\Gb \\<-l.check \\<-INP.cut \\<-Ci.sol \\<-I.INP \\<-F.l2 \\<-Jor \\<-l.xi.or \\<-fraction \\<-INPUTmod \\<-\\ooSOL \\<-fg \\<-SOL1 \\<-jj \\<-SLACK1.\\Gb \\<-STEPS1 \\<-RESULT1.ROW \\<-xab \\<-row.prob.l \\<-Z \\<-xr1 \\<-table \\<-Ci \\<-ineq \\<-INPUTmod.OR \\<-xsF \\<-F.l
\\<< OPTION TICKS '\\<-time' STO -100 CF RAD GO.NEXT
\\>>
\\>>"

readable than my initial, original version.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Inout - Gil - 01-30-2023, 02:42 PM
RE: Inout - DavidM - 02-04-2023, 02:29 PM
RE: Inout - Gil - 02-04-2023, 03:01 PM
RE: Inout - DavidM - 02-05-2023, 04:14 PM
RE: Inout - Gil - 02-05-2023, 05:22 PM
RE: Inout - DavidM - 02-05-2023, 11:36 PM
RE: Inout - Gil - 02-06-2023, 12:28 AM
RE: Inout - Gil - 02-06-2023, 10:19 AM
RE: Inout - DavidM - 02-06-2023, 01:47 PM
RE: Inout - Gil - 02-06-2023 02:26 PM



User(s) browsing this thread: 2 Guest(s)