(42S/DM42/Free42/Plus42) Birthday Probability Function
|
02-12-2023, 10:12 AM
Post: #4
|
|||
|
|||
RE: (42S/DM42/Free42/Plus42) Birthday Probability Function
It's less of an approximation but uses the formula:
\( \begin{aligned} \bar{p}(k)=\frac{_{365}P_{k}}{365^{k}} \end{aligned} \) where \(_{n}P_{k}\) denotes permutation. What I meant by "small values" is that with the HP-42S we can't go beyond \(k=195\) or we get the error: Out of Range However, it still works with Free42 due to its extended range. For an approximation we can use: \( \begin{aligned} \bar{p}(n,k) &\approx e^{-\frac{k(k-1)}{2n}} \\ &\approx \left(1 - \frac{k}{2n}\right)^{k-1} \\ \end{aligned} \) Here we assume that \(k \ll n\). Example 40 ENTER 39 * 2 / 365 / CHS ex 0.11801 1 ENTER 40 ENTER 2 / 365 / - 39 yx 0.11105 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(42S/DM42/Free42/Plus42) Birthday Probability Function - Eddie W. Shore - 02-10-2023, 04:10 AM
RE: (42S/DM42/Free42/Plus42) Birthday Probability Function - Thomas Klemm - 02-11-2023, 09:24 AM
RE: (42S/DM42/Free42/Plus42) Birthday Probability Function - Eddie W. Shore - 02-11-2023, 05:34 PM
RE: (42S/DM42/Free42/Plus42) Birthday Probability Function - Thomas Klemm - 02-12-2023 10:12 AM
RE: (42S/DM42/Free42/Plus42) Birthday Probability Function - Thomas Klemm - 02-12-2023, 10:39 AM
|
User(s) browsing this thread: 1 Guest(s)