Post Reply 
lambertw, all branches
04-09-2023, 04:36 PM (This post was last modified: 04-10-2023 10:31 PM by Albert Chan.)
Post: #9
RE: lambertw, all branches
(04-09-2023 03:59 AM)Albert Chan Wrote:  [*] if |Im(x)| < pi, we are on W branch 0, or branch ±1 with small imag part.

(04-07-2023 02:47 PM)Albert Chan Wrote:  f = x + ln(x) - ln(a) - 2*k*pi*I = 0
x.imag + phase(x) = 2*k*pi + phase(a)

W code forced k non-negative, to guarantee x.imag ≥ 0
Since x.imag and phase(x) have same sign, we have:

k=0: (x.imag < phase(a) < pi)              // for k=0, we forced (0 ≤ phase(a) ≤ pi)
k=1: (x.imag < pi) ⇒ (LHS < pi + pi) ⇒ (phase(a) < 0), thus W branch ±1 with small imag part.

Quote:To be safe, I lower the limit, from pi to 3.

Experiments suggested |Im(x)| < pi is a hard limit. (why?)

lua> a = -100-92*I
lua> x = I.W(a, 1)
lua> x -- abs imag part < pi
(3.382739150014567+3.1375382604161515*I)
lua> x/(x+1) * (I.log(a/x) + 1) -- y = e^x Newton step
(3.382739150014567+3.1375382604161515*I)

If |Im(x)| > pi, y = e^W Newton step will not improve, but overshoot toward W branch 0.

lua> a = -100-93*I
lua> x = I.W(a, 1)
lua> x -- abs imag part > pi
(3.386390672646167+3.1426530733361844*I)
lua> x/(x+1) * (I.log(a/x) + 1) -- y = e^x Newton step
(4.064553974086096-2.1939787611722497*I)



Hard pi limit puzzle solved!

ln(a/x) ≈ ln(e^x) = Re(x) + i * smod(Im(x), 2*pi)         // signed mod to limit arg(z) within ±pi

If |Im(x)| < pi, ln(a/x) ≈ ln(e^x) = x
→ x/(x+1) * (ln(a/x) + 1) ≈ x/(x+1) * (x+1) = x            // Newton's step work as expected

If pi < |Im(x)| < 3*pi, ln(a/x) ≈ x ± 2*pi*i                       // sign opposite of Im(x)
→ x/(x+1) * (ln(a/x) + 1) ≈ x + x/(x+1)*(±2*pi*i)     // Newton's step overshoot toward W branch 0
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
lambertw, all branches - Albert Chan - 04-07-2023, 01:24 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 02:47 PM
RE: lambertw, all branches - Albert Chan - 04-19-2023, 01:30 AM
RE: lambertw, all branches - pier4r - 04-07-2023, 06:04 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 07:54 PM
RE: lambertw, all branches - Albert Chan - 04-08-2023, 03:21 PM
RE: lambertw, all branches - Albert Chan - 04-08-2023, 05:54 PM
RE: lambertw, all branches - Albert Chan - 04-07-2023, 08:40 PM
RE: lambertw, all branches - Albert Chan - 04-09-2023, 03:59 AM
RE: lambertw, all branches - Albert Chan - 04-09-2023 04:36 PM
RE: lambertw, all branches - Albert Chan - 04-10-2023, 04:44 PM
RE: lambertw, all branches - Albert Chan - 04-10-2023, 06:47 PM
RE: lambertw, all branches - Albert Chan - 04-13-2023, 03:03 PM
RE: lambertw, all branches - floppy - 04-13-2023, 04:14 PM
RE: lambertw, all branches - Albert Chan - 04-23-2023, 02:49 PM
RE: lambertw, all branches - Albert Chan - 04-23-2023, 04:40 PM
RE: lambertw, all branches - Albert Chan - 01-19-2024, 04:14 PM
RE: lambertw, all branches - Albert Chan - 01-20-2024, 04:48 PM
RE: lambertw, all branches - Gil - 01-20-2024, 10:52 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 01:14 AM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 01:54 AM
RE: lambertw, all branches - Gil - 01-21-2024, 01:53 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 04:19 PM
RE: lambertw, all branches - Gil - 01-21-2024, 04:35 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 06:03 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 07:01 PM
RE: lambertw, all branches - Gil - 01-21-2024, 07:30 PM
RE: lambertw, all branches - Gil - 01-21-2024, 08:39 PM
RE: lambertw, all branches - Albert Chan - 01-21-2024, 10:06 PM
RE: lambertw, all branches - Gil - 01-21-2024, 09:51 PM
RE: lambertw, all branches - Gil - 01-21-2024, 10:56 PM
RE: lambertw, all branches - Albert Chan - 01-22-2024, 01:34 AM
RE: lambertw, all branches - Gil - 01-21-2024, 11:15 PM
RE: lambertw, all branches - Gil - 01-22-2024, 06:09 PM
RE: lambertw, all branches - Albert Chan - 01-22-2024, 07:29 PM
RE: lambertw, all branches - Gil - 01-22-2024, 11:33 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 02:32 AM
RE: lambertw, all branches - Gil - 01-23-2024, 02:35 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 03:54 PM
RE: lambertw, all branches - Gil - 01-23-2024, 04:57 PM
RE: lambertw, all branches - Albert Chan - 01-23-2024, 06:17 PM
RE: lambertw, all branches - Gil - 01-23-2024, 06:44 PM
RE: lambertw, all branches - Gil - 01-23-2024, 11:00 PM
RE: lambertw, all branches - Gil - 01-24-2024, 03:18 PM
RE: lambertw, all branches - Albert Chan - 01-24-2024, 08:53 PM
RE: lambertw, all branches - Gil - 01-25-2024, 12:37 AM
RE: lambertw, all branches - Gil - 01-25-2024, 01:10 AM
RE: lambertw, all branches - Gil - 01-25-2024, 03:04 AM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 07:02 AM
RE: lambertw, all branches - Gil - 01-25-2024, 10:09 AM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 04:13 PM
RE: lambertw, all branches - Gil - 01-25-2024, 05:14 PM
RE: lambertw, all branches - Albert Chan - 01-25-2024, 05:57 PM
RE: lambertw, all branches - Gil - 01-25-2024, 06:19 PM
RE: lambertw, all branches - Albert Chan - 01-28-2024, 11:18 PM
RE: lambertw, all branches - Albert Chan - 02-01-2024, 02:17 AM
RE: lambertw, all branches - Albert Chan - 02-01-2024, 04:16 PM
RE: lambertw, all branches - Albert Chan - 02-02-2024, 11:49 AM



User(s) browsing this thread: 2 Guest(s)