I believe the first few terms are now calculated (hopefully correct). Starting with 5 dice, the chances of the game terminating on exactly x rolls is:
Code:
x approx exact
0 0.0 0
1 0.13168724279835392 32 / 3^5
2 0.1762589048590848 614576800 / 3^20
3 0.14345296021217352 1477716325360817158616745850400 / 3^65
4 0.11119048831439719 1127935854140837598232937023804660987401971125340384 / 3^109
...
The total number of states for depth grows quickly to [1, 15, 375, 17655, 1469850, , ...] After that things get out of hand
Here's the difference between the Monte Carlo sampling and the exact calculation:
Code:
halting count for 10,000,000 rounds sampling Monte Carlo starting with 5 dice
rolls count Monte Carlo Empirical Abs Error Percent error
1 1317393 0.1317393 0.131687243 -5.20572E-05 -0.039530938
2 1761181 0.1761181 0.176258905 0.000140805 0.079885246
3 1434023 0.1434023 0.14345296 5.06602E-05 0.03531486
4 1112492 0.1112492 0.111190488 -5.87117E-05 -0.052802795
10M rolls Total Expected Value 5.4931065
Code:
rolls count Monte Carlo PDF cumulative
1 1317393 0.1317393 0.1317393 0.1317393
2 1761181 0.1761181 0.3522362 0.4839755
3 1434023 0.1434023 0.4302069 0.9141824
4 1112492 0.1112492 0.4449968 1.3591792
5 862577 0.0862577 0.4312885 1.7904677
6 673073 0.0673073 0.4038438 2.1943115
7 531444 0.0531444 0.3720108 2.5663223
8 424292 0.0424292 0.3394336 2.9057559
9 339510 0.033951 0.305559 3.2113149
10 274634 0.0274634 0.274634 3.4859489
11 223553 0.0223553 0.2459083 3.7318572
12 183459 0.0183459 0.2201508 3.952008
13 149193 0.0149193 0.1939509 4.1459589
14 123336 0.0123336 0.1726704 4.3186293
15 100750 0.010075 0.151125 4.4697543
16 83419 0.0083419 0.1334704 4.6032247
17 68726 0.0068726 0.1168342 4.7200589
18 57454 0.0057454 0.1034172 4.8234761
19 47370 0.004737 0.090003 4.9134791
20 39204 0.0039204 0.078408 4.9918871
21 32289 0.0032289 0.0678069 5.059694
22 26840 0.002684 0.059048 5.118742
23 22160 0.002216 0.050968 5.16971
24 18664 0.0018664 0.0447936 5.2145036
25 15493 0.0015493 0.0387325 5.2532361
26 12861 0.0012861 0.0334386 5.2866747
27 10782 0.0010782 0.0291114 5.3157861
28 9111 0.0009111 0.0255108 5.3412969
29 7672 0.0007672 0.0222488 5.3635457
30 6240 0.000624 0.01872 5.3822657
31 5192 0.0005192 0.0160952 5.3983609
32 4240 0.000424 0.013568 5.4119289
33 3544 0.0003544 0.0116952 5.4236241
34 2980 0.000298 0.010132 5.4337561
35 2461 0.0002461 0.0086135 5.4423696
36 2093 0.0002093 0.0075348 5.4499044
37 1686 0.0001686 0.0062382 5.4561426
38 1459 0.0001459 0.0055442 5.4616868
39 1204 0.0001204 0.0046956 5.4663824
40 1034 0.0001034 0.004136 5.4705184
41 809 0.0000809 0.0033169 5.4738353
42 715 0.0000715 0.003003 5.4768383
43 565 0.0000565 0.0024295 5.4792678
44 448 0.0000448 0.0019712 5.481239
45 396 0.0000396 0.001782 5.483021
46 326 0.0000326 0.0014996 5.4845206
47 311 0.0000311 0.0014617 5.4859823
48 235 0.0000235 0.001128 5.4871103
49 172 0.0000172 0.0008428 5.4879531
50 142 0.0000142 0.00071 5.4886631
51 135 0.0000135 0.0006885 5.4893516
52 102 0.0000102 0.0005304 5.489882
53 73 0.0000073 0.0003869 5.4902689
54 78 0.0000078 0.0004212 5.4906901
55 74 0.0000074 0.000407 5.4910971
56 58 0.0000058 0.0003248 5.4914219
57 45 0.0000045 0.0002565 5.4916784
58 40 0.000004 0.000232 5.4919104
59 34 0.0000034 0.0002006 5.492111
60 22 0.0000022 0.000132 5.492243
61 22 0.0000022 0.0001342 5.4923772
62 20 0.000002 0.000124 5.4925012
63 21 0.0000021 0.0001323 5.4926335
64 16 0.0000016 0.0001024 5.4927359
65 5 0.0000005 0.0000325 5.4927684
66 9 0.0000009 0.0000594 5.4928278
67 5 0.0000005 0.0000335 5.4928613
68 6 0.0000006 0.0000408 5.4929021
69 4 0.0000004 0.0000276 5.4929297
70 3 0.0000003 0.000021 5.4929507
71 5 0.0000005 0.0000355 5.4929862
72 2 0.0000002 0.0000144 5.4930006
73 2 0.0000002 0.0000146 5.4930152
74 5 0.0000005 0.000037 5.4930522
76 2 0.0000002 0.0000152 5.4930674
77 2 0.0000002 0.0000154 5.4930828
78 2 0.0000002 0.0000156 5.4930984
81 1 0.0000001 0.0000081 5.4931065