Integral hangs the physical Prime
|
05-27-2023, 06:14 AM
(This post was last modified: 05-27-2023 07:42 AM by C.Ret.)
Post: #2
|
|||
|
|||
RE: Integral hangs the physical Prime
Hi,
Are you sure your physical HP Prime isn't full or its memory corrupted ? I try the exact same integral on my HP Prime (Software: 2.1.14730 HardWare: C) and get no issue at all. Except I observe the following curious way of rewriting the expression when in CAS's exact mode: \( I=\int_{-3}^{0}\: \sqrt[4]{x^2+1}\cdot\sqrt[5]{x+2}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: (x+2)^{1/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: (x+2)^{(5-4)/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: (x+2)^{1-4/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: (x+2)^1\cdot(x+2)^{-4/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: (x+2)^{-4/5}\cdot (x+2)^1 \cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: \frac{1}{(x+2)^{4/5}}\cdot (x+2)\cdot(x^2+1)^{1/4}\: \mathrm{d}x \) \( I=\int_{-3}^{0}\: \frac{1}{\left((x+2)^{1/5}\right)^4}\cdot(x+2)\cdot(x^2+1)^{1/4}\: \mathrm{d}x \) Why? Why? Why? How is a negative root or n-th root defined? Why has the //Function Symbolic Setup/Complex/: System - ON - OFF // no effect on what is plot? Isn't the Hp Prime the best educational tools anymore? Competitors actually are no more so bad : or Depending on how you extrapolate the negative roots or not! Nice tool, this little french non-CAS calculator. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Integral hangs the physical Prime - lrdheat - 05-26-2023, 02:35 AM
RE: Integral hangs the physical Prime - C.Ret - 05-27-2023 06:14 AM
RE: Integral hangs the physical Prime - Albert Chan - 05-27-2023, 02:29 PM
RE: Integral hangs the physical Prime - toml_12953 - 05-27-2023, 10:17 AM
RE: Integral hangs the physical Prime - C.Ret - 05-27-2023, 01:45 PM
RE: Integral hangs the physical Prime - parisse - 05-27-2023, 03:26 PM
RE: Integral hangs the physical Prime - C.Ret - 05-28-2023, 03:19 PM
RE: Integral hangs the physical Prime - lrdheat - 05-28-2023, 04:27 PM
RE: Integral hangs the physical Prime - parisse - 05-28-2023, 04:51 PM
|
User(s) browsing this thread: 5 Guest(s)