Post Reply 
Integral hangs the physical Prime
05-27-2023, 06:14 AM (This post was last modified: 05-27-2023 07:42 AM by C.Ret.)
Post: #2
RE: Integral hangs the physical Prime
Hi,

Are you sure your physical HP Prime isn't full or its memory corrupted ?

I try the exact same integral on my HP Prime (Software: 2.1.14730 HardWare: C) and get no issue at all. Except I observe the following curious way of rewriting the expression when in CAS's exact mode:

[Image: attachment.php?aid=12162]

\( I=\int_{-3}^{0}\: \sqrt[4]{x^2+1}\cdot\sqrt[5]{x+2}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: (x+2)^{1/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: (x+2)^{(5-4)/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: (x+2)^{1-4/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: (x+2)^1\cdot(x+2)^{-4/5} \cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: (x+2)^{-4/5}\cdot (x+2)^1 \cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: \frac{1}{(x+2)^{4/5}}\cdot (x+2)\cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

\( I=\int_{-3}^{0}\: \frac{1}{\left((x+2)^{1/5}\right)^4}\cdot(x+2)\cdot(x^2+1)^{1/4}\: \mathrm{d}x \)

Why? Why? Why?
How is a negative root or n-th root defined?
Why has the //Function Symbolic Setup/Complex/: System - ON - OFF // no effect on what is plot?
Isn't the Hp Prime the best educational tools anymore?

Competitors actually are no more so bad :
[Image: attachment.php?aid=12163] or [Image: attachment.php?aid=12164]
Depending on how you extrapolate the negative roots or not!
Nice tool, this little french non-CAS calculator.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: Integral hangs the physical Prime - C.Ret - 05-27-2023 06:14 AM



User(s) browsing this thread: 5 Guest(s)