Integral hangs the physical Prime
|
05-27-2023, 02:29 PM
Post: #5
|
|||
|
|||
RE: Integral hangs the physical Prime
(05-27-2023 06:14 AM)C.Ret Wrote: \( I=\int_{-3}^{0}\: \sqrt[4]{x^2+1}\cdot\sqrt[5]{x+2}\: \mathrm{d}x \) Final rewrite is close, but not quite right. (integrand first term turned complex if x < -2) Let y = x+2 if y > 0, then 5√y = (+y)^(1/5) = y / (y^4)^(1/5) if y < 0, then 5√y = -(-y)^(1/5) = y / (-y)^(4/5) = y / (y^4)^(1/5) Note that if y<0, (y^4)^(1/5) ≠ (y^(1/5))^4 On HP Prime old emulator, 2.1.14181 (2018 10 16), we don't have this (display?) bug. Cas> int((4 NTHROOT (x^2+1)) * (5 NTHROOT (x+2)), x, -3, 0) \(\displaystyle \int _{-3}^{0}\frac{5\cdot (x+2) \left(\left(x+2\right)^{2}-4\cdot (x+2)+5\right)^{\frac{1}{4}}}{5} \cdot \left(5\mbox{ NTHROOT }(x+2)\right)^{-4}\, dx\) ✔ Cas> float(Ans) 0.8841671971 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Integral hangs the physical Prime - lrdheat - 05-26-2023, 02:35 AM
RE: Integral hangs the physical Prime - C.Ret - 05-27-2023, 06:14 AM
RE: Integral hangs the physical Prime - Albert Chan - 05-27-2023 02:29 PM
RE: Integral hangs the physical Prime - toml_12953 - 05-27-2023, 10:17 AM
RE: Integral hangs the physical Prime - C.Ret - 05-27-2023, 01:45 PM
RE: Integral hangs the physical Prime - parisse - 05-27-2023, 03:26 PM
RE: Integral hangs the physical Prime - C.Ret - 05-28-2023, 03:19 PM
RE: Integral hangs the physical Prime - lrdheat - 05-28-2023, 04:27 PM
RE: Integral hangs the physical Prime - parisse - 05-28-2023, 04:51 PM
|
User(s) browsing this thread: 5 Guest(s)