(15C) Fibonacci Numbers
|
08-06-2023, 03:16 PM
Post: #4
|
|||
|
|||
RE: (15C) Fibonacci Numbers
Another idea is to calculate:
\( \left[ \begin{matrix} 0 & 1\\ 1 & 1 \end{matrix} \right]^n \) Here's a Python program that uses exponentiation by squaring: Code: from sympy import Matrix For \(F_{49}\) we can run fib(49) to get: \( \left[ \begin{matrix} 4807526976 & 7778742049\\ 7778742049 & 12586269025 \end{matrix} \right] \) Apparently we have to pick \(7778742049\). This program for the HP-15C uses matrix operations: Code: 001 { 42 21 11 } f LBL A Example It takes about 21 seconds to calculate \(F_{49}\). 49 A 7,778,742,049. |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(15C) Fibonacci Numbers - Eddie W. Shore - 03-23-2017, 03:22 AM
RE: (15C) Fibonacci Numbers (bug with 15C LE?) - Eddie W. Shore - 03-23-2017, 01:32 PM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-07-2023, 10:09 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023, 11:05 AM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-08-2023, 11:44 AM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023, 11:06 AM
RE: (15C) Fibonacci Numbers - Joe Horn - 08-06-2023, 04:49 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023 03:16 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-07-2023, 10:49 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023, 12:06 PM
|
User(s) browsing this thread: 6 Guest(s)