Post Reply 
(15C) Fibonacci Numbers
08-07-2023, 10:49 PM (This post was last modified: 08-07-2023 11:02 PM by Thomas Klemm.)
Post: #7
RE: (15C) Fibonacci Numbers
That's nice!
We can use your formula to calculate \(F_{47}\) exactly by rounding.
This allows us to calculate:

\(
F_{93}=F_{47}^2+F_{46}^2
\)


Edit: Bummer, the HP-16C has no \(y^x\) or similar function.
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(15C) Fibonacci Numbers - Eddie W. Shore - 03-23-2017, 03:22 AM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-07-2023, 10:09 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023, 11:05 AM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-08-2023, 11:44 AM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023, 11:06 AM
RE: (15C) Fibonacci Numbers - Joe Horn - 08-06-2023, 04:49 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023, 03:16 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-07-2023 10:49 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023, 12:06 PM



User(s) browsing this thread: 8 Guest(s)