Post Reply 
(15C) Fibonacci Numbers
08-08-2023, 11:05 AM (This post was last modified: 08-08-2023 12:08 PM by Werner.)
Post: #8
RE: (15C) Fibonacci Numbers
(08-07-2023 10:09 PM)Albert Chan Wrote:  F(n) ≈ (2+√20)^n / (2^(2n-1)*√20)

Hello Albert!
This overflows already for n=123.
perhaps better

F(n) ≈ 2*(0.2+√0.2)^n / (0.4^n*√20)

which can also very easily be turned into a program, eg 41-style
(I don't have a 15C.. should arrive any minute now ;-)
can handle up till n=248, correct for n=0..44

Update: snipped older version, see two posts down for new

Cheers, Werner

41CV†,42S,48GX,49G,DM42,DM41X,17BII,15CE,DM15L,12C,16CE
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
(15C) Fibonacci Numbers - Eddie W. Shore - 03-23-2017, 03:22 AM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-07-2023, 10:09 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023 11:05 AM
RE: (15C) Fibonacci Numbers - Albert Chan - 08-08-2023, 11:44 AM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023, 11:06 AM
RE: (15C) Fibonacci Numbers - Joe Horn - 08-06-2023, 04:49 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-06-2023, 03:16 PM
RE: (15C) Fibonacci Numbers - Thomas Klemm - 08-07-2023, 10:49 PM
RE: (15C) Fibonacci Numbers - Werner - 08-08-2023, 12:06 PM



User(s) browsing this thread: 8 Guest(s)