Post Reply 
15c challenge: accuracy of a complex equation system
08-17-2023, 12:19 AM
Post: #13
RE: 15c challenge: accuracy of a complex equation system
Adding 2 columns, solving I3-I2 instead of I3, is slightly superior than adding 2 rows.

Code:
| (100,-116.6666667) (0,266.6666667)  (0,0)             (0,0)             |   | I1  |   | 10 |
| (0,266.6666667)    (0,-116.6666667) (-1E6,0)          (0,0)             |   | I2  |   | 0  |
| (0,0)              (0,147.3333333)  (1E6,147.3333333) (0,-150)          | x |I3-I2| = | 0  |
| (0,0)              (0,-150)         (0,-150)          (1E5,147.3333333) |   | I4  |   | 0  |

We get a more stable matrix.

Even if I3-I2 is not super accurate, restored I3 will still be good.
This translated to more accuracy for the other currents.

Example, this is current residual corrections, difference of SYS(A,B) vs INV(A)*B

R2 = 1e6 ohms (OP example)
Code:
ulp error   I1      I2      I3      I4
Add rows    (-1,5)  (2,0)   (2,-1)  (2,-1)
Add cols    (0,-1)  (0,0)   (0,0)   (0,-1)

R2 = 1e9 ohms
Code:
ulp error   I1      I2      I3      I4
Add rows    (7,13)  (4,1)   (5,3)   (5,7)
Add cols    (-2,-1) (-1,0)  (-1,0)  (0,-1)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
RE: 15c challenge: accuracy of a complex equation system - Albert Chan - 08-17-2023 12:19 AM



User(s) browsing this thread: 1 Guest(s)