(HP15C)(HP67)(HP41C) Bernoulli Polynomials
|
08-30-2023, 04:30 PM
Post: #11
|
|||
|
|||
RE: (HP15C)(HP67)(HP41C) Bernoulli Polynomials
(08-29-2023 01:57 AM)Albert Chan Wrote: Constant of integration, adjusted for using falling factorial numbers. It is not wrong, but we overkill a bit with this formula. Coefficients are lower factorial form of x^7, not x^6 XCas> f(m) := factor(simplify(x!/(x-m)!)); /* = x^m */ XCas> simplify([1, 63, 301, 350, 140, 21, 1] * map(f, range(1,8))) → x^7 All we need is lower factorial form of x^6, integrate it (just pretend) XCas> simplify([1, 31, 90, 65, 15, 1] * map(f, range(1,7))) → x^6 XCas> expand([1/2, 31/3, 90/4, 65/5, 15/6, 1/7] * map(f, range(2,8))) x^7/7 - x^6/2 + x^5/2 - x^3/6 + x/42 XCas> expand(bernoulli(7,x)/7) /* B^7/7 matched, since B(7) = 0 */ x^7/7 - x^6/2 + x^5/2 - x^3/6 + x/42 Linear term coefficient is B(6) = 1/42, what we wanted. We differentiate, evaluate it at x = 0, to recover it. (again, pretend) (x^m)' = (x * (x-1)^(m-1))' = (x-1)^(m-1) + x * ((x-1)^(m-1))' if x = 0, last term goes away, RHS = (-1)^(m-1) = (-1)^m * m! This is why we have factorial with alterntating sign factor. B(6) = [1/2, 31/3, 90/4, 65/5, 15/6, 1/7] * [-1!, 2!, -3!, 4!, -5!, 6!] = 1/42 We have slightly smaller numbers, and 1 less term. Code: B0(m) := { XCas> map(B0, range(10)) [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0] XCas> float(B0(16)), B0(float(16)) -7.09215686275 , -6.5625 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)