(HP15C)(HP67)(HP41C) Bernoulli Polynomials
|
09-01-2023, 06:58 PM
(This post was last modified: 09-01-2023 09:43 PM by Albert Chan.)
Post: #18
|
|||
|
|||
RE: (HP15C)(HP67)(HP41C) Bernoulli Polynomials
(09-01-2023 06:18 PM)Albert Chan Wrote: Here is a trick to reduce size of intermediate numbers, with factorial form of x^5: We can keep going! From falling factorial of x^4: B(6) = [1,7,6,1] * [0*1!/(2*3*4), -1*2!/(3*4*5), 2*3!/(4*5*6), -3*4!/(5*6*7)] = 0 - 7/30 + 3/5 - 12/35 = 1/42 Or, with T numbers, 3rd row, remove RHS sign and factorial B(6) = [1,-7,12,-6] * [0*1/(2*3*4), 1*2/(3*4*5), 2*3/(4*5*6), 3*4/(5*6*7)] = 0 - 7/30 + 3/5 - 12/35 = 1/42 Simply lower Striling 2nd kind by 2 rows work well. Code: B0(m) := { XCas 1.9.0 48 bits float, round by truncation XCas> for (m=2; m<=20; m+=2) print(m, float(B0(m)), B0(float(m))); 2, 0.166666666667, 0.166666666667 4, -0.0333333333333, -0.0333333333333 6, 0.0238095238095, 0.0238095238095 8, -0.0333333333333, -0.0333333333333 10, 0.0757575757576, 0.0757575757513 12, -0.253113553114, -0.253113554362 14, 1.16666666667, 1.1666665062 16, -7.09215686275, -7.09217076724 18, 54.9711779449, 54.971246923 20, -529.124242424, -523.164965208 |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 1 Guest(s)