The following warnings occurred:
Warning [2] count(): Parameter must be an array or an object that implements Countable - Line: 795 - File: showthread.php PHP 7.4.33 (FreeBSD)
File Line Function
/showthread.php 795 errorHandler->error





Post Reply 
cubic solver
09-08-2023, 02:26 PM (This post was last modified: 03-03-2024 11:58 PM by Albert Chan.)
Post: #1
cubic solver
This program solve x^3 = a*x + b, for x

Code:
cubic_ab(a,b) := 
BEGIN
LOCAL d;
a, b := a/3, b/2;    /* x^3 = (3a)*x + (2b) */
d := sqrt(b^2-a^3) * (-1)^(sign(re(b))==-1);
b := surd(b+d, 3);
return [a/b, b];     /* alpha, beta */
END;
Code:
cubic(a,b) :=
BEGIN
LOCAL w := exp(2*pi/3*i);
[[1,1],[w,conj(w)],[conj(w),w]] * cubic_ab(a,b);
END;

Michael Penn's example




Let x = sin(θ) + cos(θ), it reduced to cubic: x^3 = 3*x - 11/8

Cas> r := cubic(3, -11/8)
Cas> simplify(r)                 → [1/2,    (3*√5-1)/4,       (-3*√5-1)/4]
Cas> float(Ans)                  → [0.5, 1.42705098312, −1.92705098312]
Cas> float(r)                      → [1.42705098312, −1.92705098312, 0.5]

We have Cas simplify bug here! symbolic and approximate numbers don't match.
Luckily, the algorithm doesn't care which cube roots is used (no need for principle root).

But, this bug should be fixed.

Cas> b := cubic_ab(3, -11/8) [2]     → (1/256*(-√15*48*i-176))^(1/3)
Cas> polar(float(b))                         → 1., −0.77627903074
Cas> polar(simplify(b))                    → 1 , atan(√15)

Simplify bug had phase angle off by 2*pi/3:

Cas> atan(√15) - 2*pi/3.0               → −0.77627903074

Update: cubic_ab(a,b) code explained here
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
cubic solver - Albert Chan - 09-08-2023 02:26 PM
RE: cubic solver - Albert Chan - 09-08-2023, 02:44 PM
RE: cubic solver - parisse - 09-08-2023, 06:56 PM
RE: cubic solver - Albert Chan - 06-29-2024, 02:46 PM
RE: cubic solver - Albert Chan - 06-29-2024, 03:29 PM
RE: cubic solver - Albert Chan - 07-02-2024, 02:34 PM
RE: cubic solver - Albert Chan - 07-02-2024, 05:12 PM
RE: cubic solver - Albert Chan - 07-03-2024, 10:17 PM
RE: cubic solver - Albert Chan - 07-03-2024, 11:48 PM
Quarter Solver - Albert Chan - 07-04-2024, 08:37 PM



User(s) browsing this thread: 6 Guest(s)