(28 48 49 50) Bernoulli Numbers
|
09-09-2023, 07:34 PM
(This post was last modified: 09-10-2023 05:33 PM by Albert Chan.)
Post: #9
|
|||
|
|||
RE: (28 48) Bernoulli numbers
(09-09-2023 06:33 PM)Albert Chan Wrote: By design (blue region), p factors <= q factors Simpler version, removed test for p >= q We know halfp loops, n = 2^m-1 had halfp factors completely removed. Test for prime if q=p, n%q==0 is false, thus no double counting factors. max(p factors) ≤ min(q factors) hi + 1 ≤ m / hi + 1 hi^2 ≤ m hi ≤ √m Code: function min_d(m) -- B(even m>=2) reduced denominator if we set hi = m, and remove k loops, we get back O(m) version. Benchmarks suggested O(√m) version is faster for even m ≥ 12 |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(28 48 49 50) Bernoulli Numbers - John Keith - 09-05-2023, 05:27 PM
RE: (48G) Bernoulli numbers - Gerald H - 09-06-2023, 08:48 AM
RE: (48G) Bernoulli numbers - John Keith - 09-06-2023, 11:04 AM
RE: (48G) Bernoulli numbers - Gerald H - 09-06-2023, 02:34 PM
RE: (48G) Bernoulli numbers - Albert Chan - 09-07-2023, 03:37 PM
RE: (48G) Bernoulli numbers - John Keith - 09-07-2023, 04:18 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-09-2023, 06:33 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-09-2023 07:34 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-08-2023, 08:09 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-10-2023, 03:24 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-10-2023, 07:39 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-10-2023, 07:45 PM
RE: (28 48 49 50) Bernoulli Numbers - Gerald H - 09-17-2023, 02:32 PM
|
User(s) browsing this thread: 2 Guest(s)