(28 48 49 50) Bernoulli Numbers
|
09-10-2023, 03:24 PM
Post: #10
|
|||
|
|||
RE: (28 48) Bernoulli numbers
That's very neat but unfortunately it turns out to be slower than your original, smaller program for the limited range of Bernoulli numbers that can be computed this way on the HP-28/48. I imagine that it would be an improvement for systems with multiple precision floats where m can be much larger.
|
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
(28 48 49 50) Bernoulli Numbers - John Keith - 09-05-2023, 05:27 PM
RE: (48G) Bernoulli numbers - Gerald H - 09-06-2023, 08:48 AM
RE: (48G) Bernoulli numbers - John Keith - 09-06-2023, 11:04 AM
RE: (48G) Bernoulli numbers - Gerald H - 09-06-2023, 02:34 PM
RE: (48G) Bernoulli numbers - Albert Chan - 09-07-2023, 03:37 PM
RE: (48G) Bernoulli numbers - John Keith - 09-07-2023, 04:18 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-09-2023, 06:33 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-09-2023, 07:34 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-08-2023, 08:09 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-10-2023 03:24 PM
RE: (28 48) Bernoulli numbers - Albert Chan - 09-10-2023, 07:39 PM
RE: (28 48) Bernoulli numbers - John Keith - 09-10-2023, 07:45 PM
RE: (28 48 49 50) Bernoulli Numbers - Gerald H - 09-17-2023, 02:32 PM
|
User(s) browsing this thread: 2 Guest(s)