Summation proof
|
09-13-2023, 02:11 AM
Post: #1
|
|||
|
|||
Summation proof
(09-11-2023 03:48 PM)Albert Chan Wrote: \(\displaystyle \binom{x+n}{k} = I was typing the question to Math StackExchange, then I figured out the proof It is a bit OT to Bernoulli's number, so I start a new thread, for those interested. Proving RHS is easy, if we noticed \(\displaystyle \left(\frac{1}{k}\right) \binom{n-1}{k-1} = \left(\frac{1}{n}\right) \binom{n}{k}\) Also, if k is negative, comb(n, k) = 0. This explained why summation has exactly k terms. \(\begin{align} \displaystyle \binom{x+n}{k}' \bigg\rvert_{x=0} &= \frac{\binom{n}{k}}{n} + \left(\frac{n}{k}\right) \left( \frac{\binom{n-1}{k-1}}{n-1} + \left(\frac{n-1}{k-1}\right) \left(\frac{\binom{n-2}{k-2}}{n-2} + \left(\frac{n-2}{k-2}\right) (...) \right) \right) \\ &= \binom{n}{k} \left(\frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2}+\;...\;+ \frac{1}{n-(k-1)} \right) \\ &= \binom{n}{k}\;\sum_{j=n-(k-1)}^{n} \frac{1}{j} \end{align}\) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Summation proof - Albert Chan - 09-13-2023 02:11 AM
RE: Summation proof - rprosperi - 09-13-2023, 02:37 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:20 AM
RE: Summation proof - Albert Chan - 09-13-2023, 02:54 AM
RE: Summation proof - Albert Chan - 09-13-2023, 03:52 AM
RE: Summation proof - John Keith - 09-13-2023, 01:44 PM
RE: Summation proof - Albert Chan - 09-13-2023, 07:12 PM
RE: Summation proof - rprosperi - 09-13-2023, 06:49 PM
RE: Summation proof - John Keith - 09-13-2023, 08:15 PM
RE: Summation proof - Maximilian Hohmann - 09-13-2023, 08:35 PM
RE: Summation proof - Albert Chan - 09-13-2023, 11:18 PM
RE: Summation proof - rprosperi - 09-14-2023, 11:53 AM
|
User(s) browsing this thread: 3 Guest(s)